首页> 外文学位 >Cross-linking studies and molecular modeling of the regulated tropomyosin-actin-myosin S1 crossbridge cycle.
【24h】

Cross-linking studies and molecular modeling of the regulated tropomyosin-actin-myosin S1 crossbridge cycle.

机译:调节原肌球蛋白-肌动蛋白-肌球蛋白S1跨桥循环的交联研究和分子模型。

获取原文
获取原文并翻译 | 示例

摘要

In vertebrate striated muscles, crossbridges extend from thick filaments which contain myosin to thin filaments which contain actin, tropomyosin (TM), and troponin (TN). Muscle contraction results from cyclic interactions between thin and thick filaments, coupled with enzymatic hydrolysis of adenosine 5-triphosphate (ATP) by myosin. Myosin may be proteolysed to subfragment-1 (S1), a soluble head region, which retains ATPase and actin binding properties of myosin. Kinetic studies indicate weak crossbridges, (A·M·ATP and A·M·ADP·Pi) and strong crossbridges (A·M·ADP and A·M). Actin activates myosin S1 MgATPase by enhancing Pi release from A·M·ADP·Pi. Movement and tension are believed to occur as a power-stroke in strong crossbridges. Actomyosin systems are regulated by Ca2+, which binds to troponin, resulting in a shift of tropomyosin along the actin filament. However, the mechanism of tropomyosin change is controversial, with conflicting evidence for steric and kinetic blocks.; Our understanding of the crossbridge cycle was raised to a new level by recent determinations of crystal structures of rabbit actin and myosin S1. Crystal structures of truncated Dictyostelium S1 with nucleotide analogs simulate different transition states, and recent work has focused on changes in the nucleotide binding pocket and the S1 lever arm during ATP cycling. The initial formation of actin-S1 crossbridges appears to involve electrostatic interactions between S1 sites and N-terminal actin. These sites are identified by carbodiimide cross-linking with EDC to yield 170kD and 180kD bands on SDS polyacrylamide gel electrophoresis. The S1 EDC sites are located in flexible regions without crystal structure.; This project involves combined use of EDC cross-linking experiments and molecular modeling to explore the tropomyosin-actin-S1 crossbridge cycle with special reference to mechanisms of actin activation and tropomyosin regulation. The strategy follows: (1) EDC cross-linking studies of actin-S1 in different nucleotide induced transition states. The date are treated as a kinetic system to characterize binding affinities in different transition states, and study the docking interactions of S1 with actin. (2) EDC cross-linking studies of Ca2+ regulated TN-TM-actin-S1 in different transition states confirm the presence of weak and strong crossbridge, and indicate that strong crossbridges move between 3 discrete states during Ca2+ regulation. (3) An atomic model is constructed for tropomyosin, based on the known low-resolution Cα skeleton. Analysis of this structure reveals axial and azimuthal repeats consistent with a series of electrostatic interactions with actin monomers at equivalent sites along the actin filament, coupled with runs of strongly hydrophobic regions and flexible regions in the tropomyosin core. (4) Molecular modeling of the tropomyosin construct and actin filament leads to a simple picture in which tropomyosin rotates on its long axis across the actin surface, passing through three energetically favorable positional states during Ca2+ regulation. (5) Atomic models are developed for the flexible S1 loops with EDC cross-linked sites. The S1 structures with loops in different conformational states are used to simulate weak and strong crossbridges, consistent with EDC data. The docking interactions of S1 with actin suggest a mechanism for actin activation of myosin ATPase. (6) A molecular model is developed for Ca2+-regulation of tropomyosin-actin-S1 in 3 different positional states, combining the simulated structures for actin-tropomyosin and actin-S1. This model reconciles the previous EM and kinetic evidence.
机译:在脊椎动物的横纹肌中,跨桥从包含肌球蛋白的粗细丝延伸到包含肌动蛋白,原肌球蛋白(TM)和肌钙蛋白(TN)的细丝。肌肉收缩是由细丝和粗丝之间的循环相互作用以及肌球蛋白对5-三磷酸腺苷(ATP)的酶促水解作用引起的。肌球蛋白可以被蛋白水解成亚片段1(S1),即可溶性的头部区域,保留了肌球蛋白的ATPase和肌动蛋白结合特性。动力学研究表明,弱桥(A·M·ATP和A·M·ADP·Pi)和强桥(A·M·ADP和A·M)。肌动蛋白通过增强Pi从A·M·ADP·Pi的释放来激活肌球蛋白S1 MgATPase。人们认为,运动和拉力会在坚固的过桥中作为动力发生。肌动球蛋白系统受Ca 2 + 调控,Ca 2 + 与肌钙蛋白结合,导致肌动蛋白丝沿肌动蛋白丝移动。然而,原肌球蛋白改变的机制是有争议的,关于空间和动力学阻滞的证据相互矛盾。最近对兔肌动蛋白和肌球蛋白S1晶体结构的测定将对跨桥循环的理解提高到一个新的水平。带有核苷酸类似物的截短的盘基网柄菌S1的晶体结构模拟了不同的过渡态,最近的研究集中在ATP循环过程中核苷酸结合口袋和S1杠杆臂的变化。肌动蛋白-S1跨桥的初始形成似乎涉及S1位点和N端肌动蛋白之间的静电相互作用。这些部位可通过碳二亚胺与EDC交联来鉴定,以在SDS聚丙烯酰胺凝胶电泳上产生170kD和180kD谱带。 S1 EDC位点位于没有晶体结构的柔性区域中。该项目涉及结合使用EDC交联实验和分子模型来探索原肌球蛋白-肌动蛋白-S1跨桥循环,并特别提及肌动蛋白激活和原肌球蛋白调节的机制。该策略如下:(1)在不同核苷酸诱导的过渡态下,肌动蛋白S1的EDC交联研究。该数据被视为动力学系统,以表征不同过渡状态下的结合亲和力,并研究S1与肌动蛋白的对接相互作用。 (2)Ca 2 + 调控的TN-TM-actin-S1在不同过渡态下的EDC交联研究证实了弱和强横桥的存在,并表明强横桥在3个离散状态之间移动在Ca 2 + 调节过程中。 (3)基于已知的低分辨率Cα骨架,为原肌球蛋白构建了原子模型。对该结构的分析揭示了轴向和方位重复,这与沿肌动蛋白丝的等效位置处与肌动蛋白单体的一系列静电相互作用相一致,并与原肌球蛋白核心中的强疏水区和柔性区相连。 (4)对原肌球蛋白构建体和肌动蛋白丝进行分子建模可得出一幅简单的图,其中原肌球蛋白在其长轴上沿肌动蛋白表面旋转,在Ca 2 + 调节过程中经过三个能量有利的位置状态。 (5)针对具有EDC交联位点的灵活S1回路开发了原子模型。具有不同构象状态的环的S1结构用于模拟弱和强横桥,与EDC数据一致。 S1与肌动蛋白的对接相互作用表明肌动蛋白ATPase的肌动蛋白活化机制。 (6)建立了一种分子模型,用于在3种不同的位置状态下对原肌球蛋白-肌动蛋白S1的Ca 2 + 调节,结合了肌动蛋白-原肌球蛋白和肌动蛋白-S1的模拟结构。该模型与先前的EM和动力学证据相符。

著录项

  • 作者

    Shi, Jianxin.;

  • 作者单位

    State University of New York Health Science Center at Brooklyn.;

  • 授予单位 State University of New York Health Science Center at Brooklyn.;
  • 学科 Biophysics General.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号