首页> 外文学位 >Flow and turbulence in a tidal channel.
【24h】

Flow and turbulence in a tidal channel.

机译:潮汐通道中的流动和湍流。

获取原文
获取原文并翻译 | 示例

摘要

An acoustic Doppler current profiler (ADCP) has been tried and found suitable for taking profiles of the time-mean three-dimensional velocity, vertical shear, Reynolds stress and turbulent kinetic energy (TKE) density in a coastal tidal channel. The velocity profiles have been used to reveal the existence of a log-layer. The data collected with the ADCP have been combined with fine- and microstructure data collected with a moored instrument (TAMI) to examine the TKE budget and turbulence characteristics in tidal flows.; Stratification in the channel varies with the strength of the tidal flow and is weak below mid-depth. The ADCP measurements provide clear examples of secondary circulation, intense up/down-welling events, shear reversals, and transverse velocity shear. Profiles of the streamwise velocity are fitted to a logarithmic form with 1% accuracy up to a height, defined as the height of the log-layer, that varies tidally and reaches 20 m above the bottom during peak flows of 1 m s−1. The height is well predicted by 0.04u*/ω, where u * is the friction velocity and ω is the angular frequency of the dominant tidal constituent. The mean non-dimensional shear, 6U/6z/ u*/kz , is within 1% of unity at the 95% level of confidence inside the log-layer.; Estimates of the rates of the TKE production and dissipation, eddy viscosity and diffusivity coefficients and mixing length, are derived by combining measurements with the ADCP and TAMI located at mid-depth. Near the bottom (z = 3.6 m), the production rate is 100 times larger than all other measurable terms in the TKE equation. Hence, the rate of production of TKE must be balanced by dissipation. The observed rate of production is proportional to the rate of dissipation calculated using the observed TKE density and mixing length, following the closure scheme of Mellor and Yamada (1974). This proportionality holds for the entire 3 decades of the observed variations in the rate of TKE production. At mid-depth, the eddy diffusivity of density and heat, deduced from microstructure measurements, agrees with the eddy viscosity derived from measurements with the ADCP.; The scaling of the log-laver height with tidal frequency in the channel is comparable to the scaling with Coriolis parameter for the log-layer in steady planetary boundary layer. The Reynolds stress is not constant within the log-layer, and its magnitude at 3.6 m above the bottom is 3 times smaller than the shear velocity squared u2* derived from log-layer fitting. The peak of the non-dimensional spectrum for the Reynolds stress, when compared to measurements from atmospheric boundary layer, is shifted to higher wavenumbers by a factor of 2.5. One possible explanation for these discrepancies is the influence of horizontal inhomogeneity caused by bed forms. (Abstract shortened by UMI.)
机译:已经尝试了声学多普勒电流剖面仪(ADCP),并发现它适合于测量沿海潮汐通道中的时均三维速度,垂直剪切,雷诺应力和湍动能(TKE)密度。速度剖面已用于揭示对数层的存在。 ADCP收集的数据已与系泊设备(TAMI)收集的精细和微观结构数据结合起来,以检查潮汐流中的TKE预算和湍流特性。河道中的分层随潮汐流的强度而变化,并且在中深度以下较弱。 ADCP测量提供了次级循环,强烈的上/下涌事件,剪切逆转和横向速度剪切的清晰示例。在1 ms的峰值流量期间,流向速度的轮廓以1%的精度拟合为对数形式,直到高度(定义为对数层的高度)的变化呈潮汐变化并到达底部上方20 m 1 。高度可以通过0.04 u * /ω很好地预测,其中 u * 是摩擦速度,ω是主要的潮汐成分的角频率。平均无量纲剪切 6 U / 6 z / u * / k z 在对数层内部的95%置信水平下,在1%以内。通过将测量值与位于中深处的ADCP和TAMI相结合,可以得出TKE产生和消散的速率,涡流粘度和扩散系数以及混合长度的估计值。在底部附近(z = 3.6 m),生产率是TKE方程中所有其他可测量项的100倍。因此,必须通过耗散来平衡TKE的生产率。遵循Mellor和Yamada(1974)的封闭方案,观察到的生产率与使用观察到的TKE密度和混合长度计算出的耗散率成比例。在观察到的TKE生产率变化的整整30年中,这种比例均成立。在中深度处,由微结构测量得出的密度和热量的涡流扩散率与由ADCP测量得出的涡流粘度一致。通道中带有潮汐频率的对数高度缩放比例与稳定行星边界层中对数层的Coriolis参数缩放比例相当。雷诺应力在对数层内不是恒定的,并且其在底部以上3.6 m处的大小是剪切速度平方的3倍。 u 2 < / sup> * 源自对数层拟合。与从大气边界层进行的测量相比,雷诺应力的无量纲谱峰将移至更高的波数2.5倍。对于这些差异的一种可能的解释是由床形引起的水平不均匀性的影响。 (摘要由UMI缩短。)

著录项

  • 作者

    Lu, Youyu.;

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Physical Oceanography.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号