首页> 外文学位 >Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications.
【24h】

Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications.

机译:混合卤化钙钛矿用于光能转换:激发态特性和光伏应用。

获取原文
获取原文并翻译 | 示例

摘要

The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion.;Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime.;The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.;Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation.
机译:新兴的金属卤化物钙钛矿构成了溶液加工半导体研究和应用的范式转变。在过去的五年中,薄膜处理技术的进步以及我们对这些材料的基本结构,光物理和电子特性的了解,导致了钙钛矿太阳能电池的开发,其功率转换效率可与更成熟的第一代和第二代商业技术相媲美。 。这些化合物在现实世界中的影响进行测试似乎只是时间问题。像氧化物钙钛矿一样,金属卤化物钙钛矿具有ABX3化学计量,其中A通常是一价阳离子,B是二价过渡金属,X是卤化物阴离子;在半导体吸收体中电荷载流子的光生化之后,这些物质必须经过很长的距离跨越材料的厚度,以实现大的外部量子效率和有效的载流子提取。使用一种称为瞬态吸收显微镜的强大技术,我们可以在CH3NH3PbI 3薄膜中直接成像远程载流子扩散。明确表明,光激发后2 ns内电荷在220 ns内传播,在整个激发态寿命中外推扩散长度大于1微米;金属卤化物钙钛矿的固溶处理能力必然引起人们对以下问题的质疑:溶剂化的前体及其与最终固态钙钛矿相的连接。通过结构,稳态和时间分辨的吸收研究,可以确定由溶剂化和固态卤化金属配合物组成的前体组分的激发态性质与CH3NH3PbI3之间的重要联系。这种连接提供了钙钛矿相的光学非线性和电子性质的见解。 CH 3NH3PbI3的基础研究最终为在高性能设备中应用此材料和其他相关材料奠定了基础。在最后一章中,介绍了串联结构中CH3NH3PbI 3太阳能电池的操作。对经济,大规模制氢的追求促使人们寻求能够仅使用来自太阳的能量来分解水的新材料和装置设计。有鉴于此,我们介绍了一种由BiVO4光电阳极和单结CH3NH3PbI3混合钙钛矿太阳能电池组成的全溶液处理串联水分解组件。这种独特的配置可实现高效的太阳光子管理,其中金属氧化物光阳极可选择性地收集高能可见光子,而下面的钙钛矿太阳能电池则可在单程激发中捕获较低能量的近红外IR波长。光电阳极-光伏架构与标准的地球磷酸铁钴催化剂配合使用,在标准的地面一种阳光照射下无需外部偏压即可运行,在中性pH值下,其太阳能转化效率为2.5%。采用单结杂化钙钛矿材料的低成本串联水分解组件的设计为太阳能水分解研究建立了潜在的有前途的新领域;表征金属卤化物钙钛矿中光生电荷的行为对于理解操作原理和基本局限性是不可或缺的。钙钛矿光电。本文概述的大多数研究涉及原型有机-无机化合物甲基铵碘化铅(CH3NH3PbI 3)的基础研究。时间分辨泵浦光谱是这些研究的主要工具。半导体的激发会导致形成许多不同的激发态物质和电子络合物。通过分析钙钛矿薄膜中的激发态衰减动力学和光学非线性,我们确定了大部分自由电子和空穴的自发形成,其存在对于有效的光伏操作是必需的。

著录项

  • 作者

    Manser, Joseph S.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Science history.;Condensed matter physics.;Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 303 p.
  • 总页数 303
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号