首页> 外文学位 >Hydrodynamic modeling of semiconductor devices.
【24h】

Hydrodynamic modeling of semiconductor devices.

机译:半导体器件的流体动力学建模。

获取原文
获取原文并翻译 | 示例

摘要

A new semiconductor device simulator based on the Lei-Ting hydrodynamic balance equations is presented here. Unlike other hydrodynamic equation based approaches to device modeling, where the various relaxation rates are imported from Monte Carlo calculations or simply assumed to be constant, our approach includes scattering in the form of frictional force functions due to electron-impurity and electron-phonon interaction and an energy loss function due to electron-phonon interaction. These quantities are calculated within the simulation process itself, as functions of the electron drift velocity, electron temperature, as well as the electron density, without an outside, separate Monte Carlo procedure. Thus, besides the usual advantages of traditional hydrodynamic simulation approaches, the present method enjoys the added convenience of self-contained treatment of scattering.; This thesis reports on a systematic implementation of the Lei-Ting hydrodynamic balance equations as a sophisticated, versatile device simulation package, capable of 1D, 2D device modeling tasks encountered by device designers today. In addition to steady-state modeling, transient device simulations based on the new hydrodynamic model are also described. Without any complicated mathematics, a new decoupled method with a relatively large time step has been applied to the transient simulation. The time discretization algorithm for our transient simulator is based on the Crank-Nicolson method for time discretization, and for the algorithm of the time step selection we used the local error to determine the size of each time step.; We have applied our hydrodynamic balance model to {dollar}rm nsp{lcub}+{rcub}{dollar}-n-n{dollar}sp{lcub}+{rcub}{dollar} ballistic diode, MESFET and MOSFET. The results are in general accord with other methods, such as classical hydrodynamic models and Monte Carlo models. Moreover, the savings of the computational time are expected.
机译:本文介绍了一种基于雷霆流体力学平衡方程的新型半导体器件仿真器。不同于其他基于流体动力学方程的设备建模方法,其中各种弛豫率是从蒙特卡洛计算中引入的,或者简单地假定为恒定的,我们的方法包括由于电子杂质和电子-声子相互作用而以摩擦力函数形式出现的散射,以及由于电子-声子相互作用而产生的能量损失函数。这些量是在模拟过程本身中计算的,是电子漂移速度,电子温度以及电子密度的函数,无需外部单独的蒙特卡洛程序。因此,除了传统的流体动力学模拟方法的通常优点之外,本方法还具有自包含的散射处理的额外便利。本论文报告了作为一种复杂的,通用的设备仿真程序包的雷霆流体动力平衡方程的系统实现,该程序包能够完成当今设备设计人员遇到的一维,二维设备建模任务。除了稳态建模之外,还介绍了基于新流体动力学模型的暂态设备仿真。在没有任何复杂数学的情况下,具有较大时间步长的新解耦方法已应用于瞬态仿真。我们的瞬态模拟器的时间离散化算法是基于Crank-Nicolson方法进行时间离散化的,对于时间步长选择算法,我们使用局部误差来确定每个时间步长的大小。我们已将流体动力平衡模型应用于{dol} rm nsp {lcub} + {rcub} {dollar} -n-n {dollar} sp {lcub} + {rcub} {dollar}弹道二极管,MESFET和MOSFET。结果与其他方法(如经典流体力学模型和蒙特卡洛模型)基本一致。而且,期望节省计算时间。

著录项

  • 作者

    Lee, Chih-Chien.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号