首页> 外文学位 >Image processing in standing-wave fluorescence microscopy.
【24h】

Image processing in standing-wave fluorescence microscopy.

机译:驻波荧光显微镜中的图像处理。

获取原文
获取原文并翻译 | 示例

摘要

Fluorescence microscopes are valuable tools in determining the structure of the objects they image, typically, fixed and living cells and their components. However, the axial resolution of such microscopes is much worse than their transverse resolution. In addition, due to the finite aperture of the lenses used in all microscopes, not all the light emitted from the object is collected by the microscope. Every microscope acts like a low-pass filter and is therefore characterized by a transfer function, known as the optical transfer function (OTF). The bandpass region of OTF that determines which frequency components of the object will be transmitted has a characteristic shape with a cone shaped region in the middle in addition to bandlimits. Any object frequency components that fall in this cone shaped region, or outside the bandlimits are lost during imaging.; The standing-wave fluorescence microscope (SWIM) uses interference of two beams, resulting in a non-uniform, planar excitation pattern in the specimen. The optical transfer function of this microscope (SWOTF) has three distinct bands, a central band that is identical to the optical transfer function (OTF) in a conventional fluorescence microscope, and two additional sidebands that are offset from the central band. Therefore, the SWOTF has gaps between the central band and the sidebands, and information about the object that falls in the gaps or outside the three bands is lost when imaging. The principal questions answered by this thesis are: (1) Do the data in the sidebands of the SWOTF contribute additional information about the object? (2) Can the information about the object lost in the gaps in the SWOTF be recovered using computational means?; In SWFM, three images per plane of focus are required to capture all the information about the object. In the case of multiple plane data sets, there are three stacks of such triplets. In order to answer the questions posed above, the three SWFM images (or stacks) have to be first combined to generate a composite data set. This thesis describes the mathematical theory and procedure to combine the images obtained by the SWFM. Also, processing the combined data using a non-linear algorithm recovers the information lost in the gaps. This leads to improved resolution, both axial and transverse, after processing, and is demonstrated by the results shown in the thesis, from simulated as well as biological data.
机译:荧光显微镜是确定他们成像的物体(通常是固定细胞和活细胞及其成分)结构的宝贵工具。然而,这种显微镜的轴向分辨率远比其横向分辨率差。另外,由于在所有显微镜中使用的透镜的光圈有限,因此并非所有从物体发出的光都被显微镜收集。每个显微镜都起着低通滤波器的作用,因此具有传递函数的特征,即光学传递函数(OTF)。 OTF的带通区域决定了对象的哪些频率分量将被传输,它的特征形状除了带限外,中间还有一个锥形区域。落在该锥形区域中或在频带限制之外的任何物体频率分量在成像期间会丢失。驻波荧光显微镜(SWIM)使用两束光的干涉,从而在样品中产生不均匀的平面激发图案。该显微镜的光学传递函数(SWOTF)具有三个不同的谱带,一个中央谱带与常规荧光显微镜中的光学传递函数(OTF)相同,并且还有两个偏离该中央谱带的附加边带。因此,SWOTF在中心带和边带之间具有间隙,并且在成像时丢失了落在间隙中或在三个带之外的关于物体的信息。本论文回答的主要问题是:(1)SWOTF边带中的数据是否提供有关该物体的其他信息? (2)是否可以使用计算手段来恢复在SWOTF的缺口中丢失的物体的信息?在SWFM中,每个焦平面需要三张图像来捕获有关对象的所有信息。在多个平面数据集的情况下,有三叠这样的三元组。为了回答上面提出的问题,必须先将三个SWFM图像(或堆栈)组合起来以生成一个复合数据集。本文描述了结合SWFM获得的图像的数学理论和程序。而且,使用非线性算法处理组合数据可恢复在间隙中丢失的信息。处理后,轴向和横向分辨率均得到改善,论文中的结果通过模拟和生物学数据得到了证明。

著录项

  • 作者

    Krishnamurthi, Vijaykumar.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;光学;
  • 关键词

  • 入库时间 2022-08-17 11:48:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号