首页> 外文学位 >Numerical calculation of bluff body flutter derivatives via computational fluid dynamics.
【24h】

Numerical calculation of bluff body flutter derivatives via computational fluid dynamics.

机译:通过计算流体动力学数值计算钝体颤振导数。

获取原文
获取原文并翻译 | 示例

摘要

With the immense leap in computational speeds in the recent past, numerical experiments are fast maturing as a viable complement, if not an alternative, to wind tunnel investigations to study the various aerodynamic and aeroelastic phenomena. The central focus of the present study is the numerical calculation of flutter derivatives--fluid force coefficients associated with body oscillatory motions. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading.; Flutter derivatives are obtained most directly by simulating cross flow across an oscillating bluff body and comparing the unsteady lift and moment forces thus determined with theoretical expressions for the same written in terms of flutter coefficients. For a numerical simulation, such an approach would entail internal boundary motion in the flow, which requires considerable computational effort in case of most Eulerian non-adaptive grid-based schemes. An alternate approach to calculation of flutter derivatives using indicial functions has been proposed in the present study. In this approach, flutter derivatives are obtained analytically from step-start flow definitions that elicit indicial or impulse response functions for the unsteady lift and moment forces. These transient responses are obtained via numerical simulation. In recent years, the finite element method (FEM) has gained considerable acceptance in the solution of problems governed by the viscous, incompressible flow equations. FIDAP, one such general fluid dynamics analysis package that employs the finite element methodology, has been used to simulate flow circumstance that produce the above-mentioned indicial responses for a variety of bluff sections.; FEM is based on an Eulerian formulation of the governing equations. For moderate-to-high Reynolds number flows, convection often dominates and the grid points required to simulate the flow can be computationally prohibitive. Vortex methods, on the other hand, offer an efficient way to track vorticity in convection dominated regions of an external flow, while grid-based finite difference schemes provide the flexibility and accuracy to capture the viscosity dominated regions of the flow. Therefore, a hybrid finite difference--vortex method flow solver has been devised in this study for two-dimensional flow across bluff sections. For calibration purposes, the bluff body of primary focus is chosen as a square cylinder. Development along these lines, internationally, is still in a nascent state. The coupled solver developed in the present study employs an Eulerian finite difference grid in the viscous region next to the bluff section boundaries and a Lagrangian vortex particle domain in flow regions away from the boundaries. Results of this portion of the study match selected results from the recent literature.
机译:随着近来计算速度的飞跃,数值试验作为风洞研究以研究各种空气动力学和空气弹性现象的可行补充(如果不是替代方案)也在迅速成熟。本研究的重点是颤振导数的数值计算-与人体振荡运动相关的流体力系数。这些空气弹性系数在确定环境风荷载下长而柔性结构的稳定性或不稳定性中起着重要作用。颤振导数是最直接获得的,它是通过模拟横摆在振动钝体上的横流并将比较的不稳定推力和弯矩力与以颤振系数表示的理论表达式进行比较而得出的。对于数值模拟,这种方法将需要在流中进行内部边界运动,在大多数基于欧拉非自适应网格的方案中,这需要大量的计算工作。在本研究中,提出了一种使用指标函数计算颤动导数的替代方法。在这种方法中,颤振导数是从阶跃式流动定义中分析得出的,该流动定义引发了针对非稳定升力和力矩的独立或脉冲响应函数。这些瞬态响应是通过数值模拟获得的。近年来,有限元方法(FEM)在解决由粘性不可压缩流方程控制的问题上已获得了广泛认可。 FIDAP是一种采用有限元方法的通用流体动力学分析工具包,已被用于模拟流动情况,这些流动情况会在各种虚张声势部分产生上述的独立响应。 FEM基于控制方程的欧拉公式。对于中到高雷诺数流,对流通常占主导地位,并且模拟流所需的网格点在计算上可能会受到阻碍。另一方面,涡旋方法提供了一种有效的方式来跟踪外部流的对流主导区域中的涡度,而基于网格的有限差分方案则提供了捕获流的粘度主导区域的灵活性和准确性。因此,本研究中设计了一种混合有限差分-涡旋法流动求解器,用于跨钝段的二维流动。为了校准,将主要焦点的钝形体选择为方形圆柱体。在国际上,沿着这些方向的发展仍处于新生阶段。在本研究中开发的耦合求解器在粘液区域中的虚张声势有限差分网格中靠近钝化截面边界,并在远离边界的流动区域中采用了拉格朗日涡旋粒子域。这部分研究的结果与最近文献中选择的结果相符。

著录项

  • 作者

    Brar, Pavit Singh.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Civil.; Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号