首页> 外文学位 >Numerical simulations of interactions among aerodynamics, structural dynamics, and control systems.
【24h】

Numerical simulations of interactions among aerodynamics, structural dynamics, and control systems.

机译:空气动力学,结构动力学和控制系统之间相互作用的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

A robust technique for performing numerical simulations of nonlinear unsteady aeroelastic behavior is developed. The technique is applied to long-span bridges and the wing of a modern business jet. The heart of the procedure is combining the aerodynamic and structural models. The aerodynamic model is a general unsteady vortex-lattice method. The structural model for the bridges is a rigid roadbed supported by linear and torsional springs. For the aircraft wing, the structural model is a cantilever beam with rigid masses attached at various positions along the span; it was generated with the NASTRAN program. The structure, flowing air, and control devices are considered to be the elements of a single dynamic system. All the governing equations are integrated simultaneously and interactively in the time domain; a predictor-corrector method was adapted to perform this integration.;For long-span bridges, the simulation predicts the onset of flutter accurately, and the numerical results strongly suggest that an actively controlled wing attached below the roadbed can easily suppress the wind-excited oscillations. The governing equations for a proposed passive system were developed.;The wing structure is modelled with finite elements. The deflections are expressed as an expansion in terms of the free-vibration modes. The time-dependent coefficients are the generalized coordinates of the entire dynamic system. The concept of virtual work was extended to develop a method to transfer the aerodynamic loads to the structural nodes. Depending on the speed of the aircraft, the numerical results show damped responses to initial disturbances (although there are no viscous terms in either the aerodynamic or structural model), merging of modal frequencies, the development of limit-cycle oscillations, and the occurrence of a supercritical Hopf bifurcation leading to motion on a torus.
机译:开发了一种用于执行非线性非稳态气动弹性行为数值模拟的鲁棒技术。该技术应用于大跨度桥梁和现代公务机的机翼。该程序的核心是将空气动力学模型和结构模型结合起来。空气动力学模型是一般的非定常涡旋格子方法。桥梁的结构模型是由线性和扭转弹簧支撑的刚性路基。对于飞机机翼,结构模型是悬臂梁,在整个跨度的各个位置附加了刚性质量。它是使用NASTRAN程序生成的。结构,流动的空气和控制设备被认为是单个动态系统的要素。在时域中,所有控制方程都是同时且交互地集成的;对于大跨度桥梁,仿真可以准确地预测颤动的发生,数值结果强烈表明,附着在路基下方的主动控制机翼可以轻松地抑制风激。振荡。提出了一种拟议的被动系统的控制方程。机翼结构采用有限元建模。挠度表示为自由振动模式的扩展。时间相关系数是整个动态系统的广义坐标。虚拟工作的概念得到了扩展,以开发一种将空气动力载荷转移到结构节点的方法。根据飞机的速度,数值结果显示出对初始扰动的阻尼响应(尽管在空气动力学或结构模型中没有粘性项),模态频率的合并,极限循环振荡的发展以及超临界霍夫夫分叉,导致圆环上的运动。

著录项

  • 作者

    Preidikman, Sergio.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Mechanics.;Civil engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 278 p.
  • 总页数 278
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号