首页> 外文学位 >Studies on neurite outgrowth and receptor phosphorylation following kappa opioid receptor activation.
【24h】

Studies on neurite outgrowth and receptor phosphorylation following kappa opioid receptor activation.

机译:κ阿片受体激活后神经突生长和受体磷酸化的研究。

获取原文
获取原文并翻译 | 示例

摘要

Kappa opioid receptor (KOPR) is involved in many physiological functions and pharmacological responses such as analgesia, anti-pruritic effect, sedation, motor incoordination and aversion (Simonin et al., 1998; Liu-Chen, 2004). The cellular mechanisms following activation of KOPR involve in part Gi/o protein-dependent pathways (Law et al., 2000). Following KOPR activation, the receptor is phosphorylated and arrestins are recruited. Arrestins mediate agonist-dependent KOPR desensitization, internalization and down-regulation (Liu-Chen, 2004). In recent years, arrestins were found to initiate arrestin-dependent downstream signaling. Thus, agonist-promoted KOPR phosphorylation plays a pivotal role in KOPR regulation and signaling.;Previous studies from our lab showed that in Chinese hamster ovary (CHO) cells stably transfected with the human KOPR (hKOPR), U50,488H induced phosphorylation (Li et al., 2002a); however, sites of phosphorylation were not determined. Using LC-MS/MS, our lab recently identified four residues (S356, T357, T363 and S369) to be the sites of U50,488H-promoted phosphorylation in the mouse KOPR (mKOPR) stably expressed in N2A cells (Chen et al., 2016). Antibodies were generated against phosphopeptides and purified and three antibodies were found to have high specificity for the mKOPR phosphorylated at S356/T357, T363 and S369, respectively (Chen et al., 2016). Our lab previously showed that while U50,488H promoted robust hKOPR phosphorylation and internalization, etorphine induced little phosphorylation and internalization, although both were potent full agonists in enhancing [35S]GTPgammaS (Li et al., 2002a; Zhang et al., 2002; Li et al., 2003). Etorphine caused lower levels of KOPR phosphorylation at all the four residues than U50,488H by immunoblotting with the phospho-specific antibodies (Chen et al., 2016). Using the SILAC (stable isotope labeling by amino acids in cell culture) approach, we have found that compared to etorphine, U50,488H promoted higher levels of single phosphorylation at T363 and S369 and double phosphorylation at T363+S369 and T357+S369 as well as triple phosphorylation at S356+T357+S369 (Chen et al., 2016). These results indicate that an above-threshold phosphorylation is required for KOPR internalization.;It has been reported that KOPR is involved in neuronal differentiation and neurogenesis. In the first chapter, I focused on whether there are differences in the mechanisms underlying neurite outgrowth induced by U50,488H and etorphine. In the chapter 2, mechanisms of KOPR phosphorylation were characterized in detail using phospho-specific KOPR antibodies. Protein kinase C was found, for the first time, to be involved in agonist-promoted KOPR phosphorylation. The roles of PKC in behavioral effects induced by KOPR agonists in mice were examined.;For the chapter 1, in Neuro2a mouse neuroblastoma cells stably transfected with the hKOPR (N2A-3HA-hKOPR), U50,488H robustly induced neurite outgrowth, but etorphine caused outgrowth to a much lower extent. G protein-dependent pathway was found to be involved in the actions of both agonists, but beta-arrestin-dependent pathway was not. Inhibition of ERK1/2 phosphorylation decreased neurite outgrowth promoted by both agonists, indicating the roles of MAP kinase cascades in KOPR agonist-induced neuritogenesis. In contrast, beta-arrestin2, 14-3-3zeta, GEC1 and Rap1 are not involved in U50,488H- or etorphine-promoted neurite outgrowth. Thus, the two agonists appear to share the same signaling pathways and the difference between two agonists is likely due to the lower efficacy of etorphine.;For the chapter 2, U50,488H caused phosphorylation of the mKOPR at S356, T357, T363 and S369 in N2A cells stably transfected with FmK6H (FmK6H-N2A cells). NorBNI abolished U50,488H-induced KOPR phosphorylation at all four residues. GRKs (GRKs2, 3, 5 and 6) and PKCs were involved in U50,488H-mediated KOPR phosphorylation. In addition, PKC also participated in agonist-independent KOPR phosphorylation. This is the first time that PKC was shown to be involved in agonist-induced KOPR phosphorylation. We found that U50,488H caused KOPR phosphorylation at T363 and S369 in the mouse brain and PKC participated in phosphorylation of S369, but not T363, by using the PKC inhibitor chelerythrine (CHL). Thus, we further characterized effects of PKC inhibition on KOPR-mediated behaviors in CD1 mice. PKC was involved in KOPR-mediated sedation, motor incoordination and conditioned place aversion, but not analgesia and anti-scratching effect in mice.;Studies in this thesis revealed the mechanisms of KOPR-mediated neurite outgrowth and KOPR-mediated phosphorylation and the involvement of PKC in KOPR-mediated pharmacological effects in vivo. These studies push the frontier of molecular pharmacology of the KOPR, which may be useful for development of KOPR agonists for therapeutic use.
机译:κ阿片受体(KOPR)参与许多生理功能和药理反应,例如镇痛,止痒,镇静,运动不协调和反感(Simonin等,1998; Liu-Chen,2004)。激活KOPR后的细胞机制部分涉及Gi / o蛋白依赖性途径(Law等,2000)。 KOPR激活后,受体被磷酸化并募集抑制蛋白。 Arrestins介导激动剂依赖性的KOPR脱敏,内在化和下调(Liu-Chen,2004)。近年来,发现抑制蛋白可以启动依赖抑制蛋白的下游信号传导。因此,激动剂促进的KOPR磷酸化在KOPR调节和信号传导中起着关键作用。;我们实验室的先前研究表明,在被人KOPR(hKOPR)稳定转染的中国仓鼠卵巢(CHO)细胞中,U50,488H诱导了磷酸化(Li等,2002a);然而,未确定磷酸化位点。我们的实验室最近使用LC-MS / MS在N2A细胞中稳定表达的小鼠KOPR(mKOPR)中鉴定出四个残基(S356,T357,T363和S369)是U50,488H促进的磷酸化位点(Chen等。 ,2016)。产生了针对磷酸肽的抗体并进行了纯化,发现三种抗体对分别在S356 / T357,T363和S369磷酸化的mKOPR具有高特异性(Chen等,2016)。我们的实验室先前表明,尽管U50,488H促进了hKOPR的强烈磷酸化和内在化,但是依托啡啶几乎没有引起磷酸化和内在化,尽管它们都是增强[35S]GTPγS的有效全效激动剂(Li等,2002a; Zhang等,2002; Li等,2003)。通过磷酸化特异性抗体的免疫印迹,Etorphine导致所有四个残基的KOPR磷酸化水平均低于U50,488H(Chen等人,2016)。使用SILAC(在细胞培养中通过氨基酸对同位素进行稳定的同位素标记)方法,我们发现与Etophine相比,U50,488H在T363和S369处促进了更高水平的单磷酸化,在T363 + S369和T357 + S369处也促进了双磷酸化在S356 + T357 + S369处的三磷酸化作用(Chen等,2016)。这些结果表明,KOPR内在化需要高于阈值的磷酸化。据报道,KOPR参与神经元分化和神经发生。在第一章中,我重点介绍了由U50,488H和依托啡定诱导的神经突向外生长的机制是否存在差异。在第2章中,使用磷酸特异性KOPR抗体详细描述了KOPR磷酸化的机制。首次发现蛋白激酶C参与激动剂促进的KOPR磷酸化。检验了PKC在小鼠KOPR激动剂诱导的行为行为中的作用。第1章,在用hKOPR(N2A-3HA-hKOPR)稳定转染的Neuro2a小鼠神经母细胞瘤细胞中,U50,488H强烈诱导了神经突向外生长,但是依托啡定导致生长不良的程度要低得多。发现两种激动剂的作用均涉及G蛋白依赖性途径,但β-arrestin依赖性途径不参与。抑制ERK1 / 2磷酸化减少了两种激动剂促进的神经突向外生长,表明MAP激酶级联在KOPR激动剂诱导的神经形成中的作用。相反,β-arrestin2、14-3-3zeta,GEC1和Rap1不参与U50,488H或依托啡啡促进的神经突增生。因此,这两种激动剂似乎共享相同的信号传导途径,并且两种激动剂之间的差异很可能是由于依托啡的功效较低。第二章,U50,488H引起mKOPR在S356,T357,T363和S369的磷酸化稳定转染了FmK6H的N2A细胞(FmK6H-N2A细胞)。 NorBNI废除了U50,488H诱导的所有四个残基的KOPR磷酸化。 GRK(GRKs2、3、5和6)和PKC参与U50,488H介导的KOPR磷酸化。此外,PKC还参与了独立于激动剂的KOPR磷酸化。这是PKC首次被证明参与激动剂诱导的KOPR磷酸化。我们发现,U50,488H在小鼠脑中的T363和S369引起KOPR磷酸化,而PKC通过使用PKC抑制剂白屈菜红碱(CHL)参与了S369的磷酸化,但不参与T363的磷酸化。因此,我们进一步表征了PKC抑制对CD1小鼠中KOPR介导的行为的影响。 PKC参与了KOPR介导的镇静,运动不协调和条件性位置规避,但没有镇痛作用和抗effect抓作用。本论文的研究揭示了KOPR介导的神经突长出和KOPR介导的磷酸化的机制以及其参与。 PKC在KOPR介导的体内药理作用中。这些研究推动了KOPR分子药理学的前沿,这对于开发用于治疗用途的KOPR激动剂可能是有用的。

著录项

  • 作者

    Chiu, Yi-Ting.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Pharmacology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号