首页> 外文学位 >Chaos in the additive-pulse modelocked laser.
【24h】

Chaos in the additive-pulse modelocked laser.

机译:加性脉冲模式锁定激光器中的混沌。

获取原文
获取原文并翻译 | 示例

摘要

The additive-pulse modelocked (APM) laser has been traditionally used as an ultrashort pulsed light source, despite being hampered by multiple instabilities, including quasiperiodicity and chaos. Although the system is generally designed to avoid such instabilities, a detailed understanding of these nonlinear phenomena can serve to improve APM operation, as well as provide an excellent system for furthering current experimental chaos study. To this end, this thesis develops a model of the APM laser together with an experimental APM system, both of which display complicated nonlinear dynamics, including period-doubling bifurcations, chaos, and crisis behavior. The APM model is used to simulate the laser under conditions of high nonlinearity, and to explore the dependencies of the dynamics on different APM parameters: fiber length, fiber coupling, and gain. The chaotic regions of operation are characterized by embedding dimension and largest Lyapunov exponent, and some chaotic attractors are plotted in three dimensions. The experimental APM laser system is then developed, optimized with the help of the model, and significant improvements are incorporated to allow experimental observation of detailed chaotic behavior. Saturable Bragg reflector modelocking is demonstrated as a useful starting mechanism for the APM laser, and experimental results are presented. Random noise contributions are also considered in both the APM model and experiment, to allow for realistic comparison. The theoretical and experimental results are then compared graphically, indicating excellent agreement. Further data analysis techniques for confirming the existence of chaos are additionally implemented to strengthen the conclusions. Demonstration of the period-doubling route to chaos, Lyapunov exponent and correlation coefficient quantification of the chaos and the excellent correlation between theory and experiment all represent new accomplishments and valuable insight into the APM laser dynamics.
机译:传统上,加性脉冲锁模(APM)激光器尽管受到多重不稳定(包括拟周期和混沌)的影响,但一直被用作超短脉冲光源。尽管通常将系统设计为避免此类不稳定性,但对这些非线性现象的详细了解可以改善APM的运行,并为进一步进行当前的实验混沌研究提供了一个出色的系统。为此,本文开发了一个APM激光器模型和一个实验性APM系统,二者均显示出复杂的非线性动力学特性,包括倍增的分叉,混乱和危机行为。 APM模型用于在高非线性条件下模拟激光,并探索动力学对不同APM参数(光纤长度,光纤耦合和增益)的依赖性。混沌操作区域的特征在于嵌入维数和最大Lyapunov指数,并且在三维上绘制了一些混沌吸引子。然后开发实验性APM激光系统,并在模型的帮助下进行优化,并结合重大改进以允许实验观察详细的混沌行为。饱和布拉格反射器的模型对接被证明是APM激光器的有用启动机制,并给出了实验结果。在APM模型和实验中也考虑了随机噪声的影响,以便进行实际比较。然后将理论和实验结果进行图形比较,表明非常吻合。此外,还采用了进一步的数据分析技术来确认混沌的存在,以加强结论。混沌周期倍增路径的证明,Lyapunov指数以及​​混沌的相关系数定量以及理论与实验之间的出色相关性,都代表了APM激光动力学的新成就和宝贵见解。

著录项

  • 作者

    Mozdy, Eric John.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号