首页> 外文学位 >Structure-function studies on the redox-active tryptophan in cytochrome c peroxidase from Saccharomyces cerevisiae.
【24h】

Structure-function studies on the redox-active tryptophan in cytochrome c peroxidase from Saccharomyces cerevisiae.

机译:酿酒酵母细胞色素C过氧化物酶中氧化还原活性色氨酸的结构功能研究。

获取原文
获取原文并翻译 | 示例

摘要

Cytochrome c peroxidase (CCP) is used as a model protein-engineering system to study structure-function relationships in heme peroxidases. In CCP compound I, a stable pi cation radical on tryptophan 191 (Trp191) forms during the catalytic cycle and is essential for activity. The redox active Trp191 functions in the electron transfer process. By installing a metal binding site into the proximal pocket of CCP approximately 8 angstroms from Trp191, it is possible to regulate the reactivity of Trp191 by varying the concentration of potassium. By increasing the concentration of potassium there is a decrease in the activity of the cation binding CCP mutant. The activity profile correlates with a decrease in the electron transfer rate as determined from stopped-flow analysis, and a reduction in the intensity of the compound I Trp191 radical signal as measured by electron paramagnetic resonance spectroscopy. The potassium dependent behavior is due to an electrostatic influence that the cation exerts on the electrostatic potential at Trp191, thus affecting the radical stability and consequently the activity.; The identical active site architecture of CCP exists in ascorbate peroxidase (APX), including a proximal Trp179. However, the reaction mechanism and substrate specificity of APX is very different than CCP, and does not involve a radical on Trp179. We reasoned that a nearby potassium ion found in the proximal pocket of APX was partly responsible for the different redox activity of the proximal Trp in APX. Electrostatic calculations and structural observations led us to design a functional metal binding site into CCP. The mutant presented here, CCPK2, has the same metal binding site as does the potassium binding site in APX. The metal cation occupying the binding site in CCP dramatically influences the activity of this mutant protein acting as an electrostatic "molecular switch". X-ray crystallographic analysis of CCPK2 confirms that potassium occupies the engineered site. Other metal binding sites have also been built onto the CCPK2 template to change the metal binding specificity. The structure based design strategy to control the activity of CCP by a concentration dependent metal ion response is described.
机译:细胞色素c过氧化物酶(CCP)被用作模型蛋白质工程系统来研究血红素过氧化物酶中的结构-功能关系。在CCP化合物I中,色氨酸191(Trp191)上的稳定π阳离子自由基在催化循环中形成,并且对于活性至关重要。氧化还原活性Trp191在电子转移过程中起作用。通过将金属结合位点安装在距Trp191约8埃的CCP近端袋中,可以通过改变钾的浓度来调节Trp191的反应性。通过增加钾的浓度,阳离子结合CCP突变体的活性降低。活性曲线与通过停止流分析确定的电子传递速率的降低以及通过电子顺磁共振波谱法测量的化合物ITrpx191自由基信号的强度的降低相关。钾依赖性的行为是由于阳离子施加在Trp191处的静电势的静电影响,因此影响了自由基的稳定性,进而影响了活性。 CCP的相同活性位点结构存在于抗坏血酸过氧化物酶(APX)中,包括近端Trp179。但是,APX的反应机理和底物特异性与CCP有很大不同,并且在Trp179上不涉及自由基。我们认为,在APX的近端口袋中发现附近的钾离子,部分负责APX的近端Trp的不同氧化还原活性。静电计算和结构观察结果使我们设计了CCP中的功能性金属结合位点。此处介绍的突变体CCPK2与APX中的钾结合位点具有相同的金属结合位点。占据CCP中结合位点的金属阳离子极大地影响了这种充当静电“分子开关”的突变蛋白的活性。 CCPK2的X射线晶体学分析证实钾占据了工程位点。其他金属结合位点也已建立在CCPK2模板上,以改变金属结合特异性。描述了通过基于浓度的金属离子响应来控制CCP活性的基于结构的设计策略。

著录项

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Biology Molecular.; Biology Microbiology.; Biophysics General.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;微生物学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号