首页> 外文学位 >Physics motivated algorithms for partial differential equations.
【24h】

Physics motivated algorithms for partial differential equations.

机译:偏微分方程的物理激励算法。

获取原文
获取原文并翻译 | 示例

摘要

Many nonequilibrium phenomena are spatially extended, and the most popular means to model them is the partial differential equation (PDE). Resultant PDEs are, however, often nonlinear, defying analytical approaches. Thus, devising efficient numerical algorithms to solve PDEs is important for the study of nonequilibrium systems, and has traditionally been considered a major branch of applied mathematics.; A computationally efficient model that captures the crucial physics of a system can be an efficient numerical solver of the PDE describing the system. This general idea will be illustrated in terms of solvers for hyperbolic equations, such as those describing advection in fluids and linear wave propagation. We demonstrate in this thesis that a conscious pursuit of physics essence can lead to useful numerical algorithms. From this point of view, the development of solvers for physically meaningful PDEs can be considered a branch of applied physics.; Our strategy for deriving new algorithms is to implement the crucial physics, as faithfully as possible, in order to reproduce the phenomenon inside the computer. The solution of the PDE is obtained, in this approach as a by-product of the correct implementation of the physics of the problem. After explaining the derivation of algorithms for the solution of advection in fluids, we present a new methodology to derive algorithms for wave propagation problems, based on the modelling of Huygens' principle. The new methodology can be used to derive higher-order algorithms systematically. We explain why these algorithms are advantageous in comparison to standard higher-order finite-difference algorithms, and present tests and evaluations of the new schemes. We give new algorithms for the wave equation and Maxwell's equations, including the implementation of some types of boundary conditions. We conclude by suggesting extensions of the method to related problems.
机译:许多非平衡现象在空间上得到扩展,最流行的建模方法是偏微分方程(PDE)。但是,所得的PDE通常是非线性的,无视分析方法。因此,设计有效的数值算法来求解PDE对非平衡系统的研究很重要,并且传统上一直被认为是应用数学的一个主要分支。捕获系统关键物理特性的高效计算模型可以成为描述系统的PDE的高效数值求解器。将以双曲线方程的求解器(例如描述流体中对流和线性波传播的方程)的求解器来说明此一般思想。我们在本文中证明,对物理学本质的自觉追求可以导致有用的数值算法。从这个角度来看,开发具有物理意义的PDE的求解器可以被认为是应用物理学的一个分支。我们推导新算法的策略是尽可能忠实地实施关键物理,以重现计算机内部的现象。在这种方法中,作为正确实施问题物理学的副产品,获得了PDE的解决方案。在解释了流体对流求解算法的推导之后,我们基于惠更斯原理的建模方法,提出了一种新的方法来推导波传播问题的算法。新方法可用于系统地导出高阶算法。我们将解释为什么与标准的高阶有限差分算法相比,这些算法具有优势,并介绍了新方案的测试和评估。我们为波动方程和麦克斯韦方程提供了新的算法,包括某些边界条件的实现。最后,我们建议将该方法扩展到相关问题。

著录项

  • 作者

    San Martin, Luis Emilio.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Physics General.; Physics Electricity and Magnetism.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;电磁学、电动力学;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号