首页> 外文学位 >Design of superplastic cubic yttria stabilized zirconia.
【24h】

Design of superplastic cubic yttria stabilized zirconia.

机译:超塑性立方氧化钇稳定氧化锆的设计。

获取原文
获取原文并翻译 | 示例

摘要

Microstructural design concepts were utilized to create a superplastic 8 mol% yttria stabilized cubic zirconia. Initial studies on the wetting behavior of various amorphous phases with cubic zirconia and the kinetics of grain growth were undertaken to control grain growth in order to achieve superplasticity. Optimal process parameters included a rapid heating rate (100{dollar}spcirc{dollar}C/min) and hot isostatic pressing in order to achieve a small grain size and full density for cubic zirconia. It was found that grain growth rates could also be controlled by the deliberate addition of intergranular phases of various amorphous silicate or inert crystalline phases such as alumina. Silicate phases with the highest solubility for yttria and zirconia enhanced grain growth compared to control samples without grain boundary phases. Amorphous intergranular phases with the lowest solubility for yttria and zirconia were the most effective among glassy phases in suppressing grain growth and enhancing superplasticity. Activation energies for grain growth of glass containing samples were in the range of 400 kJ/mol.; In samples containing 5 wt% silica or 10 wt% alumina, the presence of a secondary phase not only proved effective against grain coarsening of the material, but also resulted in a relatively cavitation free high-temperature deformation of cubic zirconia. Results of high temperature deformation of both 10 wt% alumina and 5 wt% silica containing samples under compression indicate strain rates similar to those observed in superplastic tetragonal yttria stabilized zirconia.; Strain hardening was evident in alumina containing samples but no strain hardening was observed in silica containing samples. Strain rates as high as {dollar}4times10sp{lcub}-3{rcub}{dollar} s{dollar}sp{lcub}-1{rcub}{dollar} was obtained at 1450{dollar}spcirc{dollar}C for 10 wt% alumina containing samples and strain rates as high as {dollar}5times10sp{lcub}-3{rcub}{dollar} s{dollar}sp{lcub}-1{rcub}{dollar} was obtained at 1500{dollar}spcirc{dollar}C for 5wt% silica containing samples. Strain rate sensitivity exponent was calculated to be about 0.5. Activation energy for superplastic deformation of 683-597 kJ/mol was obtained at 10-35 MPa for 10 wt% alumina containing samples, decreasing with increasing stress. The values of activation energy for superplastic deformation of 5 wt% silica containing samples ranged from 341-411 kT/mol at 10-45 MPa, increasing with increasing stress. The use of inert amorphous or crystalline phases is a successful approach to limit grain growth and to promote superplasticity in oxide ceramics.
机译:利用微结构设计概念来制造超塑性的8摩尔%氧化钇稳定的立方氧化锆。为了实现超塑性,对立方氧化锆中各种非晶态相的润湿行为和晶粒生长动力学进行了初步研究,以控制晶粒生长。最佳工艺参数包括快速加热速率(100spspCsp {COL / min)和热等静压,以实现立方氧化锆的小粒度和全密度。已经发现,通过有意添加各种无定形硅酸盐的晶间相或惰性结晶相如氧化铝也可以控制晶粒的生长速度。与无晶界相的对照样品相比,对氧化钇和氧化锆具有最高溶解度的硅酸盐相可促进晶粒生长。在玻璃态相中,对氧化钇和氧化锆溶解度最低的无定形晶间相在抑制晶粒生长和增强超塑性方面最有效。含有玻璃的样品的晶粒生长的活化能在400kJ / mol的范围内。在包含5 wt%的二氧化硅或10 wt%的氧化铝的样品中,第二相的存在不仅被证明可以有效防止材料的晶粒粗化,而且还导致立方氧化锆相对无气蚀的高温变形。压缩的10重量%的氧化铝和5重量%的二氧化硅样品的高温变形的结果表明,应变率类似于在超塑性四方氧化钇稳定的氧化锆中观察到的应变率。在含氧化铝的样品中应变硬化明显,但在含二氧化硅的样品中未观察到应变硬化。在1450 {dol} spcirc {dollar} C的温度下获得了{dollar} 4×10sp {lcub} -3 {rcub} {dollar} s {dollar} sp {lcub} -1 {rcub} {dollar}的应变率重量百分比为5%的氧化铝样品和应变率高达1500 {dol}的{dollar} 5×10sp {lcub} -3 {rcub} s {dollar} sp {lcub} -1 {rcub} {dollar}对于5wt%的含二氧化硅的样品,为CC。应变率敏感性指数经计算为约0.5。对于10 wt%的氧化铝样品,在10-35 MPa下获得的超塑性变形的活化能为683-597 kJ / mol,随应力的增加而降低。在10-45 MPa下,含5 wt%二氧化硅的样品的超塑性变形的活化能值范围为341-411 kT / mol,随应力的增加而增加。惰性无定形或结晶相的使用是限制晶粒长大和促进氧化物陶瓷超塑性的成功方法。

著录项

  • 作者

    Sharif, Adel Assadi.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Materials Science.; Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号