首页> 外文学位 >Energy conversion and transport in organic-inorganic heterojunctions.
【24h】

Energy conversion and transport in organic-inorganic heterojunctions.

机译:有机-无机异质结中的能量转换和传输。

获取原文
获取原文并翻译 | 示例

摘要

The interface between an organic semiconductor and inorganic electrodes crucially determines the performance of organic electronic, thermoelectric, and photovoltaic devices. In these systems discrete molecular orbitals mix with the continuum energy states in inorganic crystalline materials to create unique energy landscapes that can be sensitively tuned using chemistry. Energy transport and conversion in these hybrid materials and devices are defined at the organic-inorganic interface. One approach to study this interface, is to look at the smallest hybrid building block, i.e., the junction of a single organic molecule with inorganic contacts. Conductance of single molecule junctions has been extensively studied for molecular electronics, but several lingering questions motivated the present study of thermopower in molecular junctions. In particular, conductance measurements were unable to explicitly determine how hybridization and alignment between the molecular orbitals and the electrode states define transport in the junction.Thermopower was measured using a modified scanning tunneling microscope having high spatial resolution capable of isolating and trapping small molecules between its conductive tip and a conductive substrate that acted as a second electrode. In the presence of a temperature difference between the tip and the substrate, a thermoelectric voltage was measured across the junction. The magnitude and sign of this voltage were indicative of the junction thermopower. The thermopower can uniquely identify the molecule's dominant transport orbital, as well as its alignment and coupling to the electrode states. Phenylene, alkane, and fullerene molecules of varied size and chemistry were studied. Statistical variations in thermopower implied large variations in the offset of the molecular orbital relative to the chemical potential of the contacts. Thermopower proved to be a useful diagnostic tool for studying electron transport at the hybrid interface, but measurements of fullerene-metal junctions also suggest that a hybrid material built from junction ensembles could have competitive thermoelectric efficiency.
机译:有机半导体和无机电极之间的界面至关重要地决定了有机电子,热电和光伏设备的性能。在这些系统中,离散的分子轨道与无机晶体材料中的连续能量状态混合在一起,以创建可以使用化学方法灵敏地调整的独特能量分布。这些混合材料和设备中的能量传输和转换是在有机-无机界面处定义的。研究此界面的一种方法是查看最小的混合结构单元,即单个有机分子与无机接触的连接。对于分子电子学,单分子结的电导率已经进行了广泛的研究,但是一些挥之不去的问题促使人们对分子结中的热功率进行研究。尤其是电导测量无法明确确定分子轨道与电极状态之间的杂交和排列如何定义结中的传输。热功率是使用改良的扫描隧道显微镜进行测量的,该显微镜具有较高的空间分辨率,能够在其之间分离和捕获小分子导电尖端和用作第二电极的导电基底。在尖端和基底之间存在温差的情况下,在结处测量了热电压。该电压的大小和符号表示结点热功率。热能可以唯一地识别分子的主要传输轨道,以及其排列和与电极状态的耦合。研究了各种大小和化学性质的苯,烷烃和富勒烯分子。热功率的统计变化意味着分子轨道相对于触点化学势的偏移发生了很大变化。热电被证明是研究杂化界面电子传输的有用诊断工具,但是富勒烯-金属结的测量结果也表明,由结集成体构建的杂化材料可能具有竞争性的热电效率。

著录项

  • 作者

    Malen, Jonathan Alexander.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Physical.Engineering Materials Science.Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号