首页> 外文学位 >Heat transfer and thermal management studies of lithium polymer batteries for electric vehicle applications.
【24h】

Heat transfer and thermal management studies of lithium polymer batteries for electric vehicle applications.

机译:电动汽车用锂聚合物电池的传热和热管理研究。

获取原文
获取原文并翻译 | 示例

摘要

The thermal conductivities of the polymer electrolyte and composite cathode are important parameters characterizing heat transport in lithium polymer batteries. The thermal conductivities of lithium polymer electrolytes, including poly-ethylene oxide (PEO), PEO-LiClO4, PEO-LiCF3SO 3, PEO-LiN(CF3SO2)2, PEO-LiC(CF 3SO2)3, and the thermal conductivities of TiS 2 and V6O13 composite cathodes, were measured over the temperature range from 25°C to 150°C by a guarded heat flow meter. The thermal conductivities of the electrolytes were found to be relatively constant for the temperature and for electrolytes with various concentrations of the lithium salt. The thermal conductivities of the composite cathodes were found to increase with the temperature below the melting temperature of the polymer electrolyte and only slightly increase above the melting temperature.; Three different lithium polymer cells, including Li/PEO-LiCF3 S O3/TiS2, Li/PEO-LiC(CF3 S O2)3/V6 O13, and Li/PEO-LiN(CF3 S O2)2/ Li1+x Mn2 O4 were prepared and their discharge curves, along with heat generation rates, were measured at various galvanostatic discharge current densities, and at different temperature (70°C, 80°C and 90°C), by a potentiostat/galvanostat and an isothermal microcalorimeter.; The thermal stability of a lithium polymer battery was examined by a linear perturbation analysis. In contrast to the thermal conductivity, the ionic conductivity of polymer electrolytes for lithium-polymer cell increases greatly with increasing temperature, an instability could arise from this temperature dependence. The numerical calculations, using a two dimensional thermal model, were carried out for constant potential drop across the electrolyte, for constant mean current density and for constant mean cell output power. The numerical calculations were approximately in agreement with the linear perturbation analysis.; A coupled mathematical model, including electrochemical and thermal components, was developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.
机译:聚合物电解质和复合阴极的热导率是表征锂聚合物电池中热传递的重要参数。锂聚合物电解质的热导率,包括聚环氧乙烷(PEO),PEO-LiClO 4 ,PEO-LiCF 3 SO 3 , PEO-LiN(CF 3 SO 2 2 ,PEO-LiC(CF 3 SO 2 3 ,以及TiS 2 和V 6 O 13 复合阴极的热导率,通过保护热流量计在25°C至150°C的温度范围内测量温度。发现电解质的热导率对于温度和具有各种浓度的锂盐的电解质是相对恒定的。发现复合阴极的热导率随温度低于聚合物电解质的熔融温度而增加,而高于熔融温度则仅略有增加。三种不同的锂聚合物电池,包括Li / PEO-LiCF 3 <?Eqn TeX input =“ break”> S <?Eqn TeX input =“-”> O 3 / TiS 2 ,Li / PEO-LiC(CF 3 <?Eqn TeX input =“-”> S <?Eqn TeX input =“-”> < / math> O 2 3 / V 6 <?Eqn TeX input =“-”> O 13 和Li / PEO-LiN(CF 3 <?Eqn TeX input =“ break”> S <?Eqn TeX input =“-”> O 2 2 / < math> <?Eqn TeX input =“-”> Li 1 + x <?Eqn TeX input =“-”> Mn 2 <?Eqn TeX input =“-”> O 4 制备并通过恒电位仪/恒电流仪和等温微量热计在各种恒电流放电电流密度和不同温度(70°C,80°C和90°C)下测量其放电曲线以及发热速率。 ;通过线性扰动分析来检查锂聚合物电池的热稳定性。与热导率相反,用于锂聚合物电池的聚合物电解质的离子电导率随温度的升高而大大增加,这种温度依赖性可能导致不稳定性。使用二维热模型进行数值计算,以确保电解质上的电位降恒定,平均电流密度恒定以及电池平均输出功率恒定。数值计算与线性摄动分析近似一致。建立了包括电化学和热成分的耦合数学模型,以研究锂聚合物电池的传热和热管理。根据模型计算得出的结果(包括温度分布和放电不同阶段的温度)与根据热模型计算得出的结果明显不同。电化学热模型计算出的放电曲线和产热率与实验结果吻合。研究了不同的热管理方法,包括可变电导绝缘外壳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号