首页> 外文学位 >Arsenic(III) oxidation in a municipal groundwater distribution system and a model laboratory system.
【24h】

Arsenic(III) oxidation in a municipal groundwater distribution system and a model laboratory system.

机译:市政地下水分配系统和模型实验室系统中的砷(III)氧化。

获取原文
获取原文并翻译 | 示例

摘要

The primary route of human exposure to inorganic arsenic, a carcinogen, is through consumption of drinking water. Arsenic mobility in natural systems and treatability in engineered systems are governed by its oxidation state, thus redox reactions are important. As(III) oxidation was examined in both field and laboratory systems. In field studies, arsenic concentration and redox speciation were determined for the Hanford (CA) municipal groundwater distribution system. Laboratory studies were performed to determine As(III) oxidation kinetics and mechanism with manganite as a model oxidant.;Possible treatment technologies were evaluated for removal of arsenic from the groundwater. In field studies, As(III) was found to be the predominant form of arsenic. Arsenic concentrations are higher in shallower wells and lower in deeper wells; chloride also shows a distinct contrast between shallow and deep wells. As(III) oxidation can be inferred from observation of As(V) in a storage tank and at a sampling site within the distribution system. As(V) was also found in three shallower wells. Since reaction of As(III) with oxygen is known to be slow, observation of As(V) suggests either biotic or abiotic catalysis or reaction with an alternate oxidant.;Freshly precipitated manganese oxides are a plausible oxidant for As(III) in many natural and engineered systems. A novel method for determining arsenic redox speciation in heterogeneous system was applied to examine the kinetics of As(III) oxidation by manganite. The following parameters were varied: initial As(III) concentration, pH and competitive adsorbates. Measurement over time of total As(III) rather than dissolved As(III) concentrations is needed to determine oxidation kinetics. The rate of As(III) oxidation decreases with time; this can be attributed to product inhibition due to competitive sorption of As(V). Kinetic models were applied to interpret the effect of initial As(III) concentration on reaction rates. A two-site model was invoked to explain the product inhibition effect because a single reaction site was unable to capture the effect at low ratios of [As]T/[Mn]T. The rate of As(III) oxidation decreases with an increase in pH and in the presence of phosphate. Non-stoichiometric release of Mn(II) was observed during As(III) oxidation.
机译:人类接触无机砷(致癌物)的主要途径是通过喝水。天然系统中的砷迁移率和工程系统中的可处理性受其氧化态控制,因此氧化还原反应非常重要。在现场和实验室系统中都检查了As(III)的氧化。在现场研究中,确定了汉福德(CA)市政地下水分配系统的砷浓度和氧化还原形态。以锰矿为模型氧化剂进行了实验室研究以确定As(III)的氧化动力学和机理。评价了可行的处理技术以去除地下水中的砷。在野外研究中,发现砷(III)是砷的主要形式。浅井中的砷浓度较高,深井中的砷浓度较低。氯化物在浅井和深井之间也显示出明显的对比。从储罐和分配系统内采样点处的砷(V)的观察可以推断出砷(III)的氧化。在三个较浅的井中也发现了As(V)。由于已知As(III)与氧气的反应很慢,因此对As(V)的观察表明是生物催化或非生物催化或与其他氧化剂的反应。在许多情况下,新沉淀的锰氧化物可能是As(III)的氧化剂自然和工程系统。一种确定异质体系中砷氧化还原形态的新方法被用来研究锰矿氧化As(III)的动力学。更改以下参数:初始As(III)浓度,pH和竞争性吸附物。需要确定一段时间内的总As(III)浓度而不是溶解的As(III)浓度,以确定氧化动力学。 As(III)的氧化速率随时间降低;这可能归因于As(V)的竞争性吸附引起的产物抑制。动力学模型被用来解释初始As(III)浓度对反应速率的影响。调用两个位点的模型来解释产物抑制作用,因为单个反应位点无法以[As] T / [Mn] T的低比例捕获该作用。 As(III)的氧化速率随pH值的增加和磷酸盐的存在而降低。在As(III)氧化过程中观察到Mn(II)的非化学计量释放。

著录项

  • 作者

    Chiu, Van Qing.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Civil.;Environmental Sciences.;Engineering Environmental.;Engineering Sanitary and Municipal.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号