首页> 外文学位 >Toughening of nickel aluminide (NiAl) composites.
【24h】

Toughening of nickel aluminide (NiAl) composites.

机译:铝化镍(NiAl)复合材料的增韧。

获取原文
获取原文并翻译 | 示例

摘要

Nickel aluminide (NiAl) is a candidate material for high temperature (above 1000°C) structural application in aerospace engine components due to its attractive properties such as high melting point (1638°C), moderate density (5.85 g/cm3) and excellent oxidation and corrosion resistance up to 1300–1400°C. However, NiAl exhibits brittle behavior with low ductility (less than 1–2%) and fracture toughness ( 5–7 MPa√m) at room temperature. This makes NiAl unsuitable as a structural material. The principal objective of the current study was to improve the fracture toughness of NiAl by reinforcement with a second phase and to study the toughening mechanisms in general for brittle matrix composites. Three different kinds of reinforcement architectures were considered: NiAl composites reinforced with ductile layer (vanadium and Nb-15Al-40Ti), NiAl composites reinforced with partially stabilized zirconia (2 mole % yttria stabilized zirconia - YSZ), and hybrid NiAl composites reinforced with both YSZ and ductile phases (molybdenum particulates and vanadium layers). Ductile layers can improve the fracture toughness of brittle phase primarily by the crack bridging mechanism, while YSZ has the potential to improve the fracture toughness of the matrix through the mechanism of stress-induced transformation toughening. The effects of thickness of two different ductile layers (vanadium and Nb-15A1-40Ti) on the resistance curve behavior of the layered composites were studied. The results showed that steady-state toughness in these composites increases with the increasing thickness of ductile layer. Toughening analysis was performed in the framework of large-scale bridging toughening mechanisms, which provide good agreement between the experimental results and theoretical calculations. Different responses of the layered composites under monotonic loading and cyclic loading were compared. In addition to traditional analytic toughening models, finite element analysis was conducted to elucidate the crack/microstructure interactions in the layered MAIN composites. The resistance-curve behavior of the NiAl/YSZ composites was studied and significant toughening was achieved in these composites. The stress-induced transformation in the NiAl/YSZ composites was studied using Raman spectroscopy and the shielding contributions from transformation toughening were estimated using both dilatational and dilatational plus shear formulations. It was found the dilatational models alone usually underestimate the experimentally measured toughness increments. In the final part of the current study, synergistic toughening of NiAl composites was explored using two model hybrid toughened composites—NiAl/YSZ/Mo (p) composites and layered NiAl/YSZN composites. The significant improvement of initiation toughness and resistance-curve behavior was quantified using both linear superposition concepts and upper and lower bound synergistic toughening analysis. The results showed encouraging promise of engineering synergistic composites to achieve maximum toughening with optimal microstructure.
机译:铝化镍(NiAl)由于其引人注目的特性,例如高熔点(1638°C),中等密度(5.85 g / cm ),是航空航天发动机部件中高温(1000°C以上)结构应用的候选材料。 3 ),在高达1300–1400°C的温度下具有出色的抗氧化性和耐腐蚀性。但是,NiAl在室温下表现出脆性,具有低延展性(小于1-2%)和断裂韧性( 5-7MPa√m)。这使得NiAl不适合作为结构材料。当前研究的主要目的是通过第二相增强来提高NiAl的断裂韧性,并研究脆性基体复合材料的增韧机理。考虑了三种不同的增强结构:用韧性层(钒和Nb-15Al-40Ti)增强的NiAl复合材料,用部分稳定的氧化锆(2摩尔%的氧化钇稳定的氧化锆-YSZ)增强的NiAl复合材料,以及同时使用这两种材料增强的混合NiAl复合材料YSZ和韧性相(钼微粒和钒层)。延性层主要通过裂纹桥接机制可以提高脆性相的断裂韧性,而YSZ则有可能通过应力诱导相变增韧的机制来提高基体的断裂韧性。研究了两种不同延性层(钒和Nb-15A1-40Ti)的厚度对层状复合材料电阻曲线行为的影响。结果表明,这些复合材料的稳态韧性随韧性层厚度的增加而增加。在大规模桥接增韧机理的框架内进行了增韧分析,这在实验结果和理论计算之间提供了很好的一致性。比较了层状复合材料在单调加载和循环加载下的不同响应。除了传统的分析增韧模型外,还进行了有限元分析以阐明层状MAIN复合材料中的裂纹/微观结构相互作用。研究了NiAl / YSZ复合材料的电阻曲线行为,并获得了显着的增韧效果。使用拉曼光谱研究了NiAl / YSZ复合材料中的应力诱导相变,并使用了膨胀和膨胀再加上剪切配方来估算转变增韧的屏蔽作用。发现仅膨胀模型通常低估了实验测量的韧性增量。在本研究的最后部分,使用两种模型混合增韧复合材料(NiAl / YSZ / Mo (p)复合材料和分层NiAl / YSZN复合材料)探索NiAl复合材料的协同增韧。使用线性叠加概念和上限和下限协同增韧分析,可以定量评估初始韧度和阻力曲线行为的显着改善。结果表明,工程协同复合材料有望获得最佳的微观结构,从而实现最大的增韧效果。

著录项

  • 作者

    Li, Mingwei.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号