首页> 外文学位 >Large -magnitude disturbance rejection and recovery based on human reflexes in an anthropomorphic bipedal locomotion system.
【24h】

Large -magnitude disturbance rejection and recovery based on human reflexes in an anthropomorphic bipedal locomotion system.

机译:拟人化双足运动系统中基于人体反射的大幅度干扰抑制和恢复。

获取原文
获取原文并翻译 | 示例

摘要

An anthropomorphic bipedal locomotion system is studied to investigate the system's robustness and susceptibility to loss of stability in the face of large magnitude disturbances such as slipping and tripping. The study is performed via mathematical simulation of a planar five-link biped model and closed-loop control system.;The equations of motion are formulated using the Euler-Lagrange differential equation and the Denavit-Hartenberg coordinate frame representation. The equations of impact are derived using the principles of linear and angular impulse and momentum. The equations are formulated and simulated to correctly model surface friction effects and slipping.;A nominal control system is formulated to accommodate all phases of locomotion including standing, starting, progression, and stopping. The biped is capable of progression over various surface grades with variable step length and progression velocity. Joint trajectory tracking is performed using the robust feedback linearization technique known as sliding mode control. Sub-optimal gait synthesis parameters are determined as the basis of an on-line gait optimization algorithm.;The basic capabilities of the nominally controlled bipedal locomotion system are demonstrated with simulation results. The susceptibility of the system to loss of stability after slipping and tripping is demonstrated.;A reflexive control algorithm is developed and integrated into the nominal control structure. The reflexive control successfully rejects the large magnitude disturbances of slipping and tripping. The performance of the reflexive control algorithm is demonstrated and the improvement in robustness of the locomotion system is quantified.
机译:研究了一种拟人化的两足动物运动系统,以研究该系统在面对较大的扰动(例如打滑和绊倒)时的鲁棒性和对稳定性损失的敏感性。这项研究是通过对平面五连杆两足动物模型和闭环控制系统的数学模拟进行的。运动方程是使用Euler-Lagrange微分方程和Denavit-Hartenberg坐标系表示法来制定的。冲击方程式是使用线性和角冲量和动量原理导出的。该方程式经过公式化和仿真,以正确模拟表面摩擦效果和滑移。;制定了名义控制系统,以适应运动的所有阶段,包括站立,开始,前进和停止。两足动物能够以可变的步长和前进速度在各种表面坡度上前进。联合轨迹跟踪使用称为滑模控制的鲁棒反馈线性化技术执行。确定次优步态综合参数作为在线步态优化算法的基础。通过仿真结果证明了名义控制双足运动系统的基本功能。证明了该系统对滑脱和跳闸后失去稳定性的敏感性。;开发了自反控制算法,并将其集成到标称控制结构中。自反控制成功地消除了大的打滑和跳闸干扰。证明了自反控制算法的性能,并量化了运动系统鲁棒性的提高。

著录项

  • 作者

    Healy, Timothy Andrew.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Mechanical engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号