首页> 外文学位 >In vitro and in vivo characterization of genetically engineered cells microencapsulated in a HEMA-MMA copolymer .
【24h】

In vitro and in vivo characterization of genetically engineered cells microencapsulated in a HEMA-MMA copolymer .

机译:在HEMA-MMA共聚物中微囊化基因工程细胞的体外和体内表征。

获取原文
获取原文并翻译 | 示例

摘要

The encapsulation of genetically engineered cells in small-diameter ( ∼ 450 m m) poly(hydroxyethyl methacrylate-co-methyl methacrylate) (HEMA-MMA, 75% HEMA) microcapsules as a platform for the use of encapsulated cells in an alternate approach to autologous somatic gene therapy was explored. The effect of inclusion of a matrix in the core of the capsules on the behaviour of three different cell lines, namely human embryonal kidney (HEK) "293" cells transfected to secrete human hepatic lipase, mouse C2C12 myoblasts transfected to secrete human growth hormone, and mouse L929 fibroblasts transfected to secrete human placental alkaline phosphatase (SEAP) was investigated in vitro. Presence of ultralow gelling temperature agarose in the core of the capsule promoted the proliferation of HEK cells. The viability and transgene expression of transfected C2C12 cells was improved in microcapsules that contained MatrigelRTM, a reconstituted basement membrane extract from a mouse sarcoma. Co-encapsulation with a bovine dermal type I collagen successfully maintained the viability of L929 cells. In addition, reduction of the concentration of poly(HEMA-MMA) in the solution used to fabricate the capsules did not affect the rate or extent of proliferation of encapsulated HEK cells. The in vivo performance of poly(HEMA-MMA) encapsulated cells was investigated with transfected L929 cells that were implanted in the peritoneal cavity of C3H mice. The implantation of microcapsules that were suspended in a phosphate-buffered saline solution or an ultralow gelling agarose gel (SeaPrepRTM, which physically disintegrated) resulted in deformation, aggregation, and poor retrievability of the microcapsules. As a result, limited viability of the encapsulated cells was observed 3 weeks post-implantation. However, immobilization of the microcapsules in a low gelling temperature agarose gel (SeaPlaqueRTM) resulted in maintenance of viability of ∼ 50% of the encapsulated cells. Once the viable cells were released from retrieved microcapsules and regrown as monolayers, they expressed SEAP at a similar level to cells released from non-implanted microcapsules. Thus, the potential for the delivery of recombinant proteins with poly(HEMA-MMA) encapsulated genetically engineered cells was established in this study.
机译:将基因工程细胞封装在小直径(约450毫米)的聚(甲基丙烯酸羟乙酯-甲基丙烯酸甲酯共​​聚物)(HEMA-MMA,75%HEMA)微胶囊中,作为在其他自体方法中使用被封装细胞的平台探索了体细胞基因疗法。胶囊核心中包含基质对三种不同细胞系行为的影响,这三种细胞系分别是转染为分泌人肝脂肪酶的人类胚胎肾脏(HEK)“ 293”细胞,转染为分泌人生长激素的小鼠C2C12成肌细胞,在体外研究了转染分泌人胎盘碱性磷酸酶(SEAP)的小鼠L929成纤维细胞。胶囊核心中存在超低胶凝温度的琼脂糖促进了HEK细胞的增殖。在含有MatrigelRTM的微胶囊中,转染的C2C12细胞的生存力和转基因表达得到了改善,MatrigelRTM是从小鼠肉瘤中重构的基底膜提取物。与牛真皮I型胶原蛋白的共包封可以成功维持L929细胞的生存能力。另外,用于制造胶囊的溶液中聚(HEMA-MMA)浓度的降低不会影响所包封的HEK细胞的增殖速率或程度。用植入C3H小鼠腹膜腔的转染的L929细胞研究了聚(HEMA-MMA)封装的细胞的体内性能。悬浮在磷酸盐缓冲盐溶液或超低凝胶琼脂糖凝胶(SeaPrepRTM,已物理崩解)中的微胶囊的植入导致微胶囊的变形,聚集和可回收性差。结果,在植入后3周观察到包囊细胞的有限生存力。但是,将微胶囊固定在低胶凝温度的琼脂糖凝胶(SeaPlaqueRTM)中导致维持〜50%的被包封细胞的活力。一旦从回收的微囊中释放出活细胞并使其重新生长为单层,它们就会以与从未植入的微囊中释放的细胞相似的水平表达SEAP。因此,在这项研究中确立了用聚(HEMA-MMA)封装的基因工程细胞递送重组蛋白的潜力。

著录项

  • 作者

    Lahooti, Shahab.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号