首页> 外文学位 >Atomic-Scale Design, Synthesis and Characterization of Two-Dimensional Material Interfaces.
【24h】

Atomic-Scale Design, Synthesis and Characterization of Two-Dimensional Material Interfaces.

机译:二维材料界面的原子尺度设计,合成和表征。

获取原文
获取原文并翻译 | 示例

摘要

The reduction of material dimensions to near atomic-scales leads to changes in the properties of these materials. The most recent development in reduced dimensionality is the isolation of atomically thin materials with 2 "bulk" or large-scale dimensions. The isolation of a single plane of carbon atoms has thus paved the way for the study of material properties when one of three dimensions is confined. Early studies revealed a wealth of exotic physical phenomena in these two-dimensional (2D) layers due to the valence and crystalline symmetry of the materials, focusing primarily on understanding the intrinsic properties of the system. Recent studies have begun to investigate the influence that the surroundings have on the 2D material properties and how those effects may be used to tune the composite system properties. In this thesis, I will examine the synthesis and characterization of these 2D interfaces to understand how the constituents impact the overall observations and discuss how these interfaces might be used to deliberately manipulate 2D materials. I will begin by demonstrating how ultra-high vacuum (UHV) conditions enable the preparation and synthesis of 2D materials on air-unstable surfaces by utilizing a characteristic example of crystalline silver. The lack of catalytic activity of silver toward carbon-containing precursors is overcome by using atomic carbon to grow the graphene on the surface. The resulting system provides unique insight into graphene-metal interactions as it marks the lower boundary for graphene-metal interaction strength. I will then show how new 2D materials can be grown utilizing this growth motif, demonstrating the methodology with elemental silicon. The atomically thin 2D silicon grown on the silver surfaces clearly demonstrates a diamond-cubic crystal structure, including an electronic bandgap of ~1eV. This work marks the realization of both a new 2D semiconductor and the direct scaling limit for bulk sp3 silicon. The common growth technique is extended to integrate the two 2D materials onto the same silver surface under vacuum conditions; these new interfaces reveal characteristics of van der Waals interactions and electronic decoupling from the metallic substrate. The heterogeneous 2D system provides key insight into the competition between physical and chemical interactions in this novel material system. Finally, a larger scale graphene-semiconductor interface is examined between graphene and crystalline germanium. The covalent-bonding of the germanium crystal provides strong anisotropy at the surface, leading to symmetry-dependent growth and behavior. These systems show unique tunability afforded by strain at the interface, leading to the potential for wafer-scale manipulation. These results clearly call for the treatment of 2D material interfaces as composite material systems, with effective properties derived from each constituent material.
机译:将材料尺寸减小到接近原子级会导致这些材料的特性发生变化。减小尺寸的最新进展是隔离具有2个“整体”或大规模尺寸的原子薄材料。因此,当限制三个维度之一时,单个碳原子平面的隔离为研究材料特性铺平了道路。早期研究表明,由于材料的化合价和晶体对称性,这些二维(2D)层中存在大量奇异的物理现象,主要着重于理解系统的固有特性。最近的研究已开始研究周围环境对2D材料特性的影响以及如何使用这些效果来调整复合系统的特性。在本文中,我将研究这些2D界面的合成和特征,以了解这些成分如何影响整体观测结果,并讨论如何将这些界面用于故意操纵2D材料。我将首先说明超高真空(UHV)条件如何通过利用结晶银的典型示例在空气不稳定的表面上制备和合成2D材料。通过使用原子碳在表面上生长石墨烯,可以克服银对含碳前体缺乏催化活性的问题。所得系统提供了石墨烯与金属相互作用的独特见解,因为它标志着石墨烯与金属相互作用强度的下限。然后,我将展示如何利用这种生长图案来生长新的2D材料,并说明使用元素硅的方法。在银表面生长的原子薄的2D硅清楚地显示出菱形立方晶体结构,包括〜1eV的电子带隙。这项工作标志着新的2D半导体的实现以及块体sp3硅的直接缩放限制。扩展了常见的生长技术,以在真空条件下将两种2D材料集成到同一银表面上;这些新界面揭示了范德华相互作用和电子与金属基底的解耦特性。异构2D系统提供了对这种新型材料系统中物理和化学相互作用之间竞争的关键见解。最后,研究了石墨烯与结晶锗之间较大比例的石墨烯-半导体界面。锗晶体的共价键在表面提供强各向异性,从而导致对称性生长和行为。这些系统显示出界面处的应变所提供的独特可调性,从而有可能进行晶圆级处理。这些结果显然要求将2D材料界面视为复合材料系统,并具有从每种组成材料中获得的有效特性。

著录项

  • 作者

    Kiraly, Brian Thomas.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号