首页> 外文学位 >Aerodynamic performance of osculating-cones waveriders at high altitudes.
【24h】

Aerodynamic performance of osculating-cones waveriders at high altitudes.

机译:圆锥形波瓣乘员在高海拔地区的空气动力学性能。

获取原文
获取原文并翻译 | 示例

摘要

The steady-state aerodynamic characteristics of three-dimensional waverider configurations immersed in hypersonic rarefied flows are investigated. Representative geometries are generated using an inverse design procedure, the method of osculating cones, which defines an exit plane shock shape and approximates the flow properties of the compression surface by assuming that each spanwise station along the shock profile lies within a region of locally conical flow. Vehicle surface and flow field properties are predicted using the direct simulation Monte Carlo method, a probabilistic numerical scheme in which simulated molecules are followed through representative collisions with each other and solid surfaces, and subsequent deterministic displacement.; The aerodynamic properties of high- and low-Reynolds number waverider geometries, optimized for maximum lift-to-drag ratio and subject to mission-oriented constraints, are contrasted with results from reference caret and delta wings with similar internal volumes to quantify the relevance and advantage of the waverider concept at high altitudes. The high-Reynolds number waverider, optimized for the continuum regime at M = 4 and Re = 250 million, was the focus of recent wind tunnel testing for near on-design and off-design conditions, including low subsonic speeds. The present work extends the previous analyses into the high-altitude regime. The low-Reynolds number waverider, optimized at M = 20 and Re = 2.5 million, is studied to determine if optimization potential exists for a high-Mach number waverider at high altitudes. A characteristic length of 5 m is assumed for both waverider configurations, representative of a hypersonic missile concept. The geometries are aerodynamically evaluated over a parametric space consisting of an altitude variation of 95 km to 150 km and an angle of attack range of –5° to 10°. The effect of off-design Mach number on the performance of the high-Reynolds number waverider is also considered.; At M = 4 in level flight, from 95 km to 105 km, the lift-to-drag ratio of the volume-matched caret wing is superior to that of the osculating-cones waverider optimized for M = 4 and Re = 250 million. From 105 km to 150 km, the performance of the osculating-cones waverider is slightly superior to that of caret and delta wings due to the degree of concavity of its lower surface. At off-design conditions, the performance of the three configurations approaches a common free-molecular limit. At M = 20 in level flight, the lift-to-drag ratio of the osculating-cones waverider optimized for M = 20 and Re = 2.5 million is similar to a volume-matched caret wing, due to the caret wing's enhanced lift coefficient. At higher angles of attack, the superior drag characteristics of the osculating-cones waverider produces an increased lift-to-drag ratio over that of the reference configurations from 95 km to 120 km. At higher altitudes, the performance of the three configurations approaches a common free-molecular limit. Maximum lift-to-drag ratio does not exceed unity for the configurations studied over the chosen high-altitude parametric space, which is consistent with previous investigations. Results support the hypothesis that potential for aerodynamic optimization exists at high altitudes for realistic, volume-oriented waverider configurations.
机译:研究了浸没在高超音速稀薄流中的三维乘波器构型的稳态空气动力学特性。代表性的几何形状是使用逆设计程序(一种使圆锥体闭合的方法)生成的,该方法定义了出口平面激波形状,并通过假设沿着激波轮廓的每个展向位置位于局部圆锥形流动的区域内来近似压缩表面的流动特性。 。使用直接模拟蒙特卡洛方法预测车辆的表面和流场特性,该方法是一种概率数值方案,其中模拟的分子通过彼此之间以及与固体表面的代表性碰撞以及随后的确定性位移来遵循。高雷诺数和低雷诺数的乘波器几何形状的空气动力学特性(针对最大升阻比进行了优化并受任务导向的约束)与参考插入符号和具有相似内部体积的三角翼的结果形成对比,以量化相关性和在高海拔地区使用Waverider概念的优势。高雷诺数波乘器,针对M = 4和Re = 2.5亿的连续谱系统进行了优化,是近日风洞测试的重点。设计和非设计条件,包括低亚音速。目前的工作将以前的分析扩展到高空区域。研究了在M = 20和Re = 250万时优化的低雷诺数波乘器,以确定是否存在高马赫数波乘器的优化潜力。高海拔。两种波峰飞行器配置均假定特征长度为5 m,代表了超音速导弹的概念。几何形状是在一个参数空间内进行空气动力学评估的,该参数空间包括95 km至150 km的高度变化和–5°至10°的迎角范围。还考虑了非设计马赫数对高雷诺数乘波器性能的影响。在水平飞行中M = 4的情况下,从95 km到105 km,与体积匹配的插入符机翼的升阻比优于为M优化的振动锥波瓣取力器的升阻比。 = 4,而Re = 2.5亿。在105 km至150 km范围内,由于其下表面的凹面程度,所以圆锥锥波状波的性能略优于插入符号和三角翼。在非设计条件下,这三种配置的性能接近共同的自由分子极限。在水平飞行中M = 20时,优化了M = 20和Re = 250万类似于与体积匹配的插入式机翼,因为插入式机翼的升力系数更高。在较高的迎角下,与锥面参考配置相比,密闭圆锥波状波导管的出色阻力特性使其升阻比从95 km增加到120 km。在更高的海拔上,这三种配置的性能接近共同的自由分子极限。对于在选定的高空参数空间上研究的配置,最大升阻比不超过1,这与以前的研究一致。结果支持这样的假设:对于现实的,体积导向的乘波体配置,在高海拔地区存在空气动力学优化的潜力。

著录项

  • 作者

    Graves, Rick Evan.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号