首页> 外文学位 >Numerical Optimization Methods for Image Processing and Machine Learning.
【24h】

Numerical Optimization Methods for Image Processing and Machine Learning.

机译:图像处理和机器学习的数值优化方法。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, numerical optimization methods for three different classes of problems are presented : statistical modeling of crime, compressive sensing, and ordinal embedding. A common aspect of each of these problems is their need for computational efficiency. The input data sets can be large or high-dimensional, so each method sparsifies or reduces the dimension of the data, while preserving essential structure. We make use of several popular paradigms of modern optimization such as non-local operators, randomized sampling, sparse regulation, relaxations of intractable problems, and divide-and-conquer. The novel variations and analysis of these approaches suggest promising directions of further study in image processing and machine learning.;First, we are given a discrete sample of event locations, and we wish to produce a probability density that models the relative probability of events occurring in a spatial domain. Standard density estimation techniques do not incorporate priors informed by spatial data. Such methods can result in assigning significant positive probability to locations where events cannot realistically occur. In particular, when modeling residential burglaries, standard density estimation can predict residential burglaries occurring where there are no residences. Incorporating the spatial data can inform the valid region for the density. When modeling very few events, additional priors can help to correctly fill in the gaps. Learning and enforcing correlation between spatial data and event data can yield better estimates from fewer events. We propose a non-local version of Maximum Penalized Likelihood Estimation based on the H1 Sobolev seminorm regularizer that computes non-local weights from spatial data to obtain more spatially accurate density estimates. We evaluate this method in application to a residential burglary data set from San Fernando Valley with the non-local weights informed by housing data or a satellite image.;Second, we analyze a method for compressed sensing. The ℓ 0 minimization of compressed sensing is often relaxed to ℓ 1, which yields easy computation using the shrinkage mapping known as soft thresholding, and can be shown to recover the original solution under certain hypotheses. Recent work has derived a general class of shrinkages and associated nonconvex penalties that better approximate the original ℓ 0 penalty and empirically can recover the original solution from fewer measurements. We specifically examine p-shrinkage and firm thresholding. We prove that given data and a measurement matrix from a broad class of matrices, one can choose parameters for these classes of shrinkages to guarantee exact recovery of the sparsest solution. We further prove convergence of the algorithm iterative p-shrinkage (IPS) for solving one such relaxed problem.;Lastly, we consider the problem of embedding unweighted, directed k-nearest neighbor graphs in low-dimensional Euclidean space. The k-nearest neighbors of each vertex provide ordinal information on the distances between points, but not the distances themselves. Relying only on such ordinal information, along with the low-dimensionality, we recover the coordinates of the points up to arbitrary similarity transformations (rigid transformations and scaling). Furthermore, we also illustrate the possibility of robustly recovering the underlying density via the Total Variation Maximum Penalized Likelihood Estimation (TV-MPLE) method. We make existing approaches scalable by using an instance of a local-to-global algorithm based on group synchronization, recently proposed in the literature in the context of sensor network localization, and structural biology, which we augment with a scale synchronization step. We show our approach compares favorably to the recently proposed Local Ordinal Embedding (LOE) algorithm even in the case of smaller sized problems, and also demonstrate its scalability on large graphs. The above divide-and-conquer paradigm can be of independent interest to the machine learning community when tackling geometric embeddings problems.
机译:本文提出了针对三类不同问题的数值优化方法:犯罪统计模型,压缩感知和有序嵌入。这些问题的共同点是它们对计算效率的需求。输入数据集可以是大维,也可以是高维,因此每种方法都可以稀疏或减小数据的维数,同时保留必要的结构。我们利用了现代优化的几种流行范例,例如非本地算子,随机抽样,稀疏规则,难以解决的问题的缓解以及分而治之。这些方法的新颖变化和分析为图像处理和机器学习的进一步研究提供了有希望的方向。首先,我们为事件位置提供了一个离散样本,我们希望产生一个概率密度来模拟事件发生的相对概率在空间领域。标准密度估计技术不包含由空间数据告知的先验。此类方法可能导致为无法实际发生事件的位置分配显着的正概率。特别是在对住宅盗窃进行建模时,标准密度估计可以预测没有住宅的住宅盗窃。合并空间数据可以告知有效区域的密度。当对很少的事件建模时,其他先验可以帮助正确地填补空白。学习和加强空间数据与事件数据之间的关联可以从更少的事件中获得更好的估计。我们提出了基于H1 Sobolev半范式正则化器的最大惩罚似然估计的非本地版本,该版本从空间数据计算非本地权重以获得更精确的空间密度估计。我们将该方法应用到San Fernando Valley的住宅入室盗窃数据集中,并通过房屋数据或卫星图像告知非本地权重。其次,我们分析了一种压缩感知方法。 ℓ 0压缩感测的最小化通常是放宽的。图1所示的方法使用称为软阈值的收缩映射可轻松进行计算,并且可以证明在某些假设下可以恢复原始解。最近的工作得出了一般的收缩率类别和相关的非凸罚分,可以更好地近似原始的ℓ罚分。零罚分,凭经验可以从较少的测量中恢复原始解决方案。我们专门研究p收缩率和公司阈值。我们证明了给定的数据和来自广泛类别矩阵的度量矩阵,人们可以为这些类别的收缩选择参数,以确保最稀疏解决方案的准确恢复。我们进一步证明了求解这样一个松弛问题的算法迭代p收缩(IPS)的收敛性。最后,我们考虑了在低维欧氏空间中嵌入无权有向k最近邻图的问题。每个顶点的k个近邻提供有关点之间距离的序数信息,但不提供距离本身。仅依靠此类有序信息以及低维性,我们可以恢复点的坐标,直到任意相似度转换(刚性转换和缩放)为止。此外,我们还说明了通过总变化最大惩罚似然估计(TV-MPLE)方法稳健地恢复基础密度的可能性。我们通过使用基于组同步的局部到全局算法实例来使现有方法具有可扩展性,最近在文献中在传感器网络本地化和结构生物学的背景下提出了这种方法,并通过规模同步步骤进行了扩充。我们展示了即使在问题较小的情况下,我们的方法也比最近提出的局部有序嵌入(LOE)算法优越,并且还展示了其在大型图上的可伸缩性。当解决几何嵌入问题时,上述分而治之范式可能是机器学习社区的独立利益。

著录项

  • 作者

    Woodworth, Joseph.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Applied mathematics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号