首页> 外文学位 >On High-Performance Benders-Decomposition-Based Exact Methods With Application to Mixed-Integer and Stochastic Problems
【24h】

On High-Performance Benders-Decomposition-Based Exact Methods With Application to Mixed-Integer and Stochastic Problems

机译:基于高性能Benders分解的精确方法及其在混合整数和随机问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

Stochastic integer programming (SIP) combines the difficulty of uncertainty and non-convexity, and constitutes a class of extremely challenging problems to solve. Efficiently solving SIP problems is of high importance due to their vast applicability. Therefore, the primary focus of this dissertation is on solution methods for SIPs. We consider two-stage SIPs and present several enhanced decomposition algorithms for solving them. Our main goal is to develop new decomposition schemes and several acceleration techniques to enhance the classical decomposition methods, which can lead to efficiently solving various SIP problems to optimality.;In the first essay of this dissertation, we present a state-of-the-art survey of the Benders decomposition algorithm. We provide a taxonomy of the algorithmic enhancements and the acceleration strategies of this algorithm to synthesize the literature, and to identify shortcomings, trends and potential research directions. In addition, we discuss the use of Benders decomposition to develop efficient (meta-)heuristics, describe the limitations of the classical algorithm, and present extensions enabling its application to a broader range of problems.;Next, we develop various techniques to overcome some of the main shortfalls of the Benders decomposition algorithm. We propose the use of cutting planes, partial decomposition, heuristics, stronger cuts, and warm-start strategies to alleviate the numerical challenges arising from instabilities, primal inefficiencies, weak optimality/feasibility cuts, and weak linear relaxation. We test the proposed strategies with benchmark instances from stochastic network design problems. Numerical experiments illustrate the computational efficiency of the proposed techniques.;In the third essay of this dissertation, we propose a new and high-performance decomposition approach, called Benders dual decomposition method. The development of this method is based on a specific reformulation of the Benders subproblems, where local copies of the master variables are introduced and then priced out into the objective function. We show that the proposed method significantly alleviates the primal and dual shortfalls of the Benders decomposition method and it is closely related to the Lagrangian dual decomposition method. Computational results on various SIP problems show the superiority of this method compared to the classical decomposition methods as well as CPLEX 12.7.;Finally, we study parallelization of the Benders decomposition method. The available parallel variants of this method implement a rigid synchronization among the master and slave processors. Thus, it suffers from significant load imbalance when applied to the SIP problems. This is mainly due to having a hard mixed-integer master problem that can take hours to be optimized. We thus propose an asynchronous parallel Benders method in a branchand- cut framework. However, relaxing the synchronization requirements entails convergence and various efficiency problems which we address them by introducing several acceleration techniques and search strategies. In particular, we propose the use of artificial subproblems, cut generation, cut aggregation, cut management, and cut propagation. The results indicate that our algorithm reaches higher speedup rates compared to the conventional synchronized methods and it is several orders of magnitude faster than CPLEX 12.7.
机译:随机整数规划(SIP)结合了不确定性和非凸性的难点,构成了一类要解决的极具挑战性的问题。有效地解决SIP问题具有广泛的适用性,因此具有很高的重要性。因此,本文的主要重点是针对SIP的解决方法。我们考虑两阶段的SIP,并提出了几种改进的分解算法来解决它们。我们的主要目标是开发新的分解方案和多种加速技术,以增强经典的分解方法,从而可以有效地解决各种SIP问题,使其达到最优。在本论文的第一篇论文中,我们提出了一种最新的研究方法。分解算法的艺术综述。我们提供了算法增强的分类法和该算法的加速策略,以综合文献,并找出不足,趋势和潜在的研究方向。此外,我们讨论了使用Benders分解开发有效的(元)启发式算法,描述了经典算法的局限性,并提出了扩展使其能够应用于更广泛的问题。接下来,我们开发了各种技术来克服某些问题。分解算法的主要缺点。我们建议使用剖切面,部分分解,启发式,更强的削减和热启动策略来缓解因不稳定性,原始效率低下,最优/可行性削减较弱以及线性松弛较弱而引起的数值挑战。我们使用来自随机网络设计问题的基准实例测试了所提出的策略。数值实验说明了所提技术的计算效率。在本文的第三篇论文中,我们提出了一种新的高性能分解方法,称为Benders对偶分解方法。此方法的开发基于Benders子问题的特定重新制定,其中引入了主变量的本地副本,然后将其定价为目标函数。我们表明,提出的方法显着缓解了Benders分解方法的原始和对偶缺点,并且与Lagrangian对偶分解方法密切相关。在各种SIP问题上的计算结果表明,与传统的分解方法和CPLEX 12.7相比,该方法具有优越性。最后,我们研究了Benders分解方法的并行化。该方法的可用并行变体在主处理器和从处理器之间实现了严格的同步。因此,当应用于SIP问题时,它将遭受明显的负载不平衡。这主要是由于存在一个硬混合整数主问题,可能需要花费数小时来进行优化。因此,我们在分支剪切框架中提出了一个异步并行Benders方法。但是,放宽同步要求会带来收敛和各种效率问题,我们将通过介绍几种加速技术和搜索策略来解决这些问题。特别是,我们建议使用人工子问题,切割生成,切割聚集,切割管理和切割传播。结果表明,与传统的同步方法相比,我们的算法可达到更高的加速率,并且比CPLEX 12.7快几个数量级。

著录项

  • 作者

    Rahmaniani, Ragheb.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Industrial engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号