首页> 外文学位 >Pronounced light -matter coupling in periodic semiconductor quantum wells.
【24h】

Pronounced light -matter coupling in periodic semiconductor quantum wells.

机译:周期性半导体量子阱中明显的光-质耦合。

获取原文
获取原文并翻译 | 示例

摘要

The development of advanced technological methods for growth of semiconductors, such as molecular beam epitaxy, have allowed growth of layered semiconductor structures with precision to a single atomic layer. One important structure is the semiconductor quantum well, consisting of a thin layer of a smaller bandgap semiconductor grown between layers of thicker, larger bandgap semiconductor. Quantum wells are, for example, largely responsible for making the semiconductor laser a practical device. By increasing the binding energy of excitons (hydrogen-like, bound electron-hole pairs in semiconductors), and allowing them to couple to the continuum of vacuum photon modes, semiconductor quantum wells have made excitons the focus of numerous fundamental optical studies.;Stacks of periodically grown quantum wells, grown far enough apart such that electronic tunneling between quantum wells is unimportant, can still be coupled by light. N light-coupled quantum wells have N exciton-light, or exciton-polariton, eigenmodes, each characterized by a distinct energy and radiative lifetime dependent on the periodicity of the quantum wells. By adjusting the periodicity of the quantum wells and the material parameters, engineering of the light-matter interaction of these one-dimensional mesoscopic crystals is possible. The interesting new properties of these structures open the possibility for new devices. Periodic multiple quantum wells with a period in the vicinity of half the exciton resonance wavelength are studied in linear measurements of reflection, transmission and absorption. The optical properties are dominated by the eigenmodes of the light-coupled quantum wells. At Bragg periodicity, where the oscillator strengths of all quantum well excitons are concentrated into one superradiant mode, a photonic band gap grows in amplitude and linearly in energy width with increasing number of quantum wells N. A corresponding N times increased radiative damping rate compared to a single quantum well is observed, originating from expulsion of the light character of the superradiant mode from the photonic bandgap structure. The slope of linewidth versus N gives the radiative linewidth of the exciton. For periods away from Bragg condition, all normal modes become optically active, and are observed in reflection and absorption experiments.;Because light-coupling alters the photon density of states, formation of the N exciton-polariton eigenmodes is also evidenced in photoluminescence after nonresonant excitation into the free carrier continuum. The strongly modified light-matter interaction for photons in the photonic gap at Bragg periodicity is also manifest in the inhibited emission from the superradiant mode, a surprising result explained by a consideration of the linear properties.;The temporal dynamics of Rayleigh scattering of a resonant excitation pulse from disordered semiconductor multiple quantum wells has many interesting aspects, and has recently been the subject of much debate. The effect of light-coupling on resonant Rayleigh scattering from periodic semiconductor multiple quantum well structures is investigated both experimentally and theoretically. Polaritonic effects are found to dominate the Rayleigh scattered light temporal dynamics due to the simultaneous coexistence of several eigenmodes with different energy and radiative decay times for a given periodicity. They give rise to polarization beating between modes and determine rise and decay times of the resonance Rayleigh scattered signals.
机译:诸如分子束外延之类的用于半导体生长的先进技术方法的发展已经允许将层状半导体结构精确地生长到单个原子层。一种重要的结构是半导体量子阱,它由生长在较厚的较大带隙半导体层之间的较小的带隙半导体薄层组成。例如,量子阱在很大程度上使半导体激光器成为一种实用的设备。通过增加激子的结合能(半导体中类似氢的键合电子空穴对),并使它们与真空光子模式的连续体耦合,半导体量子阱使激子成为众多基础光学研究的重点。周期性生长的量子阱中的一部分,距离足够远,以至于量子阱之间的电子隧穿并不重要,仍然可以通过光耦合。 N个光耦合量子阱具有N个激子光或激子极化本征模,每个特征模的特征在于不同的能量和辐射寿命,具体取决于量子阱的周期性。通过调节量子阱的周期性和材料参数,这些一维介观晶体的光-质相互作用的工程化成为可能。这些结构有趣的新特性为新设备的开发打开了可能性。在反射,透射和吸收的线性测量中,研究了周期在激子共振波长的一半附近的周期性多量子阱。光学性质受光耦合量子阱的本征模控制。在Bragg周期性下,所有量子阱激子的振荡器强度都集中到一种超辐射模式,随着量子阱N的增加,光子带隙的幅度和能量宽度呈线性增长。与之相比,与之相比,辐射阻尼率增加了N倍。观察到一个单量子阱,其源于从光子带隙结构驱逐出超辐射模式的光特征。线宽相对于N的斜率给出了激子的辐射线宽。对于远离布拉格条件的时间段,所有正常模式都将变为光学活动状态,并在反射和吸收实验中观察到。;由于光耦合改变了态的光子密度,因此在非共振后的光致发光中也证明了N激子-极化子本征模式的形成激发进入自由载子连续体。布拉格周期的光子间隙中光子间隙中光子的强烈改变的光-质相互作用也表现为超辐射模式的受抑制发射,这是通过考虑线性特性而得出的令人惊讶的结果;共振的瑞利散射的时间动态来自无序半导体多量子阱的激发脉冲具有许多有趣的方面,并且最近已成为许多争论的主题。通过实验和理论研究了光耦合对周期性半导体多量子阱结构的共振瑞利散射的影响。对于给定的周期性,由于具有不同能量和辐射衰减时间的几种本征模式的同时存在,极化效应被认为是瑞利散射光时间动态的主导。它们引起模式之间的极化跳动,并确定共振瑞利散射信号的上升和衰减时间。

著录项

  • 作者

    Prineas, John Paul.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Condensed matter physics.;Optics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号