首页> 外文学位 >A study of flow boiling phenomena using real time neutron radiography.
【24h】

A study of flow boiling phenomena using real time neutron radiography.

机译:使用实时中子射线照相术研究流沸腾现象。

获取原文
获取原文并翻译 | 示例

摘要

The operation and safety of both fossil-fuel and nuclear power stations depend on adequate cooling of the thermal source involved. This is usually accomplished using liquid coolants that are forced through the high temperature regions by a pumping system this fluid then transports the thermal energy to another section of the power station. However, fluids that undergo boiling during this process create vapor that can be detrimental, and influence safe operation of other system components. The behavior of this vapor, or void, as it is generated and transported through the system is critical in predicting the operational and safety performance. This study uses two advanced penetrating radiation techniques, Real Time Neutron Radiography (RTNR), and High Speed X-Ray Tomography (HS-XCT), to examine void generation and transport behavior in a flow boiling system.The geometries studied were tube side flow boiling in a cylindrical configuration, and a similar flow channel with an internal twisted tape swirl flow generator. The heat transfer performance and pressure drop characteristics were monitored in addition to void distribution measurements, so that the impact of void distribution could be determined. The RTNR and heat transfer pipe flow studies were conducted using boiling Refrigerant 134a at pressures from 500 to 700 kPa, inlet subcooling from 3 to 12°C and mass fluxes from 55 to 170kg/m 2-s with heat fluxes up to 40 kW/m2.RTNR and HS-XCT were used to measure the distribution and size of the vapor phases in the channel for cylindrical tube-side flow boiling and swirl-flow boiling geometries. The results clearly show that the averaged void is similar for both geometries, but that there is a significant difference in the void distribution, velocity and transport behavior from one configuration to the next. Specifically, the void distribution during flow boiling in a cylindrical-tube test section showed that the void fraction was largest near the tube center and decreased with increasing radial distance. For swirling flow, the void concentration was highest in the center of each subchannel formed by the twisted tape insert, producing two local void maxima at each axial position. Furthermore, the instantaneous RTNR results show that the effects of bubble agglomeration change from one geometry to the next. To further examine the application of RTNR for void distribution measurement, both vertical and horizontal orientations were examined. These experimental results show similar cross sectional averaged axial distributions of the void fraction but significant differences in the local void behavior.The HS-XCT experiments were conducted on swirl-flow boiling of Refrigerant 123 at similar conditions as the RTNR experiments. These tests were conducted to qualitatively compare and verify the void distribution and behavior obtained using RTNR techniques. The HS-XCT results verify that during smooth flow boiling in a vertical tube the void tends to concentrate in the center of the channel and decrease outward to the channel walls. For swirl flow, the void tends to concentrate near the center of each subchannel formed by the twisted tape. Furthermore, wall region void fraction for smooth-flow boiling was significantly higher than swirling flow conditions due to the significant centrifugal forces present in swirl-flow. These centrifugal forces may improve the heat transfer and dryout behavior during swirl-flow conditions.This work contributes to the development of two-phase flow diagnostics based on penetrating radiative techniques, i.e., RTNR and HS-XCT for void distribution measurement, and enhances the knowledge of flow boiling systems. The application of HS-XCT and RTNR for the study of flow boiling phenomena using smooth and swirl-flow geometries has clearly demonstrated that differences in local void distribution result in differences in heat transfer behavior.
机译:化石燃料和核电站的运行和安全都取决于所涉及热源的充分冷却。这通常通过使用液体冷却剂来完成,该液体冷却剂由泵送系统迫使其通过高温区域,然后该流体将热能传输到电站的另一部分。但是,在此过程中沸腾的流体会产生有害的蒸气,并影响其他系统组件的安全运行。在生成和传输通过系统时,这种蒸气或空隙的行为对于预测运行和安全性能至关重要。这项研究使用了两种先进的穿透辐射技术,即实时中子射线照相术(RTNR)和高速X射线断层扫描术(HS-XCT),来研究流沸腾系统中空隙的产生和传输行为。以圆柱形配置沸腾,以及带有内部扭曲带涡流发生器的类似流道。除了空隙分布测量之外,还监测了传热性能和压降特性,从而可以确定空隙分布的影响。使用沸腾的制冷剂134a在500至700 kPa的压力,3至12摄氏度的入口过冷和55至170 kg / m 2的质量通量,热通量高达40 kW / m2的条件下进行RTNR和传热管流动研究。 RTNR和HS-XCT用于测量圆柱管侧流沸腾和旋流沸腾几何形状的通道中气相的分布和大小。结果清楚地表明,两种几何形状的平均空隙相似,但是从一种构造到另一种构造,空隙分布,速度和传输行为存在显着差异。具体地,在圆柱管测试部分中在流煮期间的空隙分布表明,空隙率在管中心附近最大,并且随着径向距离的增加而减小。对于旋流,空隙浓度在由扭曲的带状插入物形成的每个子通道的中心最高,从而在每个轴向位置产生两个局部空隙最大值。此外,瞬时RTNR结果表明,气泡团聚的影响从一种几何形状变化到另一种几何形状。为了进一步检查RTNR在空隙分布测量中的应用,检查了垂直方向和水平方向。这些实验结果表明,空隙率的横截面平均轴向分布相似,但局部空隙行为存在显着差异。HS-XCT实验是在与RTNR实验相似的条件下对制冷剂123的旋流沸腾进行的。进行这些测试以定性比较和验证使用RTNR技术获得的空隙分布和行为。 HS-XCT结果证明,在垂直管中平稳沸腾的过程中,空隙倾向于集中在通道的中心,并向外减少到通道壁。对于旋流,空隙倾向于集中在由扭曲带形成的每个子通道的中心附近。此外,由于旋流中存在明显的离心力,用于顺流沸腾的壁区域空隙率显着高于旋流条件。这些离心力可以改善涡流条件下的传热和干透性能。这项工作有助于基于渗透辐射技术(即RTNR和HS-XCT)用于空隙分布测量的两相流诊断技术的发展,并增强了沸腾系统知识。 HS-XCT和RTNR在利用光滑和旋流几何学研究流动沸腾现象中的应用清楚地表明,局部空隙分布的差异会导致传热行为的差异。

著录项

  • 作者

    Novog, David Raymond.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号