首页> 外文学位 >Neurocontrol of industrial motion systems with actuator nonlinearities.
【24h】

Neurocontrol of industrial motion systems with actuator nonlinearities.

机译:具有执行器非线性的工业运动系统的神经控制。

获取原文
获取原文并翻译 | 示例

摘要

The past decade has witnessed a growing body of experimental work showing that neural networks (NN) and fuzzy logic systems can result in improved performance in complex feedback control problems. Since it is already well established that neural and fuzzy systems are adept at solving pattern recognition problems, as well as at providing approximate solutions to complex optimization problems, they are particularly suited for improving performance in complex nonlinear systems in the presence of large uncertainties. In applications such as VLSI circuit design and elsewhere, the requirements on the speed and precision of motion are increasing. Such electro-mechanical systems are characterized by complex dynamics having unmodeled nonlinearities, time delays, high-frequency actuation dynamics, disturbances, friction, and actuators with deadzone and backlash. The control problems associated with such complex systems are not easy, as they do not satisfy most of the assumptions made in the controls literature, including linearity in the parameters, feedback linearizability, and the model matching condition.; Different techniques for compensation of these nonlinearities have been developed in this dissertation. Standard techniques such as proportional-derivative controllers result in limit cycles if the system has deadzone or backlash. Adaptive control schemes require additional and unrealistic assumptions on actuator nonlinearities that do not always hold. NN controllers are adaptive learning systems, but they do not need usual assumptions made in adaptive control theory such as linearity in the parameters and availability of a known regression matrix.; This dissertation presents a series of controllers based on NN for compensation of nonlinearities appearing in industrial and automotive motion systems, including friction, deadzone, and backlash. The standard multilayer perceptron NN has been modified in order to approximate piecewise continuous functions of the sort that appear in friction, deadzone, backlash, and other motion control actuator nonlinearities. A rigorous mathematical proof of the approximation property for piecewise continuous functions is given as well as simulation of the modified NN.; NN compensators for industrial systems with actuator nonlinearities have been shown extremely effective in correcting motion inaccuracies arising from these nonlinearities. As “intelligent control systems” they are capable of learning and adapting on-line to more effectively control the system. It is shown how to design NN controllers for systems with actuator nonlinearities, demonstrate that they give closed-loop stability and guaranteed performance, and show the simulation results on different dynamical systems. In the case of backlash compensation, two different tuning algorithms are presented: modified backpropagation tuning law and modified Hebbian tuning law.; Nonlinear system identification using radial basis function NN is presented. The state estimation error is proven to converge to zero asymptotically. Parameters of the identifier converge to the ideal parameters provided that persistency of excitation condition is fulfilled. The multiple models identification structure, and its application to the multimodel failure detection is analyzed.
机译:过去十年见证了越来越多的实验工作,这些实验表明神经网络(NN)和模糊逻辑系统可以提高复杂的反馈控制问题的性能。由于已经公认神经和模糊系统善于解决模式识别问题,并能为复杂的优化问题提供近似解决方案,因此它们特别适合在存在较大不确定性的情况下提高复杂非线性系统的性能。在诸如VLSI电路设计等应用中,对运动的速度和精度的要求不断提高。这样的机电系统的特征在于具有未建模的非线性,时间延迟,高频致动动力学,扰动,摩擦以及具有死区和反冲的致动器的复杂动力学。与这样复杂的系统相关的控制问题并不容易,因为它们不满足控制文献中的大多数假设,包括参数的线性,反馈线性度和模型匹配条件。本文开发了不同的非线性补偿技术。如果系统具有死区或游隙,则诸如比例微分控制器之类的标准技术会导致极限循环。自适应控制方案需要对执行器非线性进行额外且不切实际的假设,这些假设并不总是成立。 NN控制器是自适应学习系统,但是它们不需要在自适应控制理论中做出的通常假设,例如参数的线性和已知回归矩阵的可用性。本文提出了一系列基于神经网络的控制器,用于补偿工业和汽车运动系统中出现的非线性,包括摩擦,死区和间隙。已对标准多层感知器NN进行了修改,以近似出现在摩擦,死区,齿隙和其他运动控制执行器非线性中的分段连续功能。给出了分段连续函数逼近性质的严格数学证明,以及对改进的NN的仿真。对于具有执行器非线性的工业系统,NN补偿器在纠正由这些非线性引起的运动误差方面已显示出极为有效的效果。作为“智能控制系统”,它们能够在线学习和适应以更有效地控制系统。演示了如何为具有执行器非线性的系统设计NN控制器,证明它们具有闭环稳定性和保证的性能,并显示了在不同动态系统上的仿真结果。在间隙补偿的情况下,提出了两种不同的调谐算法:修正的反向传播调谐律和修正的Hebbian调谐律。提出了基于径向基函数神经网络的非线性系统辨识。证明状态估计误差渐近收敛到零。只要满足激励条件的持久性,标识符的参数就收敛到理想参数。分析了多模型识别结构及其在多模型故障检测中的应用。

著录项

  • 作者

    Selmic, Rastko Ratko.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Electronics and Electrical.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号