首页> 外文学位 >Designing and engineering recombinant hemoglobins as potential hemoglobin-based oxygen carriers.
【24h】

Designing and engineering recombinant hemoglobins as potential hemoglobin-based oxygen carriers.

机译:设计和改造重组血红蛋白作为潜在的基于血红蛋白的氧气载体。

获取原文
获取原文并翻译 | 示例

摘要

The need for a safe and reliable blood substitute has long been recognized. An understanding of the molecular basis for low oxygen affinity and high cooperativity in recombinant (r) Hemoglobins (Hbs) is essential in applying protein engineering methodology to design novel rHbs as Hb-based oxygen carriers. This thesis reports studies on the structure-function relationships in the allosteric mechanism of Hb A, rHb and cross-linked rHbs. The Hb expression system developed in our laboratory enables us to construct and produce specific rHbs. Biophysical and biochemical experiments include oxygen-dissociation studies for measuring the oxygen affinity, cooperativity, and the anion and Bohr effects; kinetic studies for measuring CO-binding and dissociation constants; and 1 H nuclear magnetic resonance (NMR) spectroscopy for studying the structures and conformations of these rHbs. 1H-NMR studies suggest that the molecular basis for low-oxygen affinity in these rHbs is that they favor the T conformation even when they are still ligated. This is true for the low-oxygen-affinity rHbs with mutations) in the α1β 1 and/or α1β2 subunit interfaces studied here. Our results on the relative effect of amino acid substitution with opposite charges at β108Asn (located in the α1β1 subunit interface and in the central cavity of Hb) have shown that a change in the ionic environment has significant effects on the regulation of oxygen affinity by allosteric effectors. From a systematic study of rHbs mutated at the β108 site, rHb (βN108Q) is found to exhibit low oxygen affinity, high cooperativity, and more stable against autoxidation than other studied rHbs. rHb (αL29F, βN108Q) is shown to optimize the functions of rHb (βN108Q), i.e., low oxygen affinity, high cooperativity, stability against auto- and NO-induced oxidation, and may fulfill the requirements of an Hb-based therapeutic agent for different clinical applications.
机译:人们早已认识到需要安全可靠的血液替代品。了解重组(r)血红蛋白(Hbs)中低氧亲和力和高协同性的分子基础对于应用蛋白质工程学方法设计新颖的rHb作为基于Hb的氧载体至关重要。本论文报道了Hb A,rHb和交联rHbs的变构机理中的结构-功能关系。我们实验室开发的Hb表达系统使我们能够构建和生产特定的rHb。生物物理和生化实验包括氧离解研究,用于测量氧亲和力,协同性以及阴离子和玻尔效应;动力学研究,用于测量CO结合和解离常数;和 1 H核磁共振波谱研究这些rHb的结构和构象。 1 H-NMR研究表明,这些rHb中低氧亲和力的分子基础是即使它们仍被连接,它们也倾向于T构象。对于α 1 β 1 和/或α 1 β中具有突变的低氧亲和力rHb的情况如此这里研究了2 个子单元接口。我们对β108Asn(位于α 1 β 1 亚基界面和Hb中心腔中)带有相反电荷的氨基酸取代的相对影响的结果表明:离子环境的变化对变构效应子对氧亲和力的调节有重要影响。通过对rHb在β108位点突变的系统研究,发现rHb(βN108Q)与其他研究过的rHbs相比,具有较低的氧亲和力,较高的协同性以及对自氧化的稳定性。 rHb(αL29F,βN108Q)被证明可优化rHb(βN108Q)的功能,即低氧亲和力,高协同性,对自氧化和NO诱导的氧化的稳定性,并且可以满足基于Hb的治疗剂的要求不同的临床应用。

著录项

  • 作者

    Tsai, Ching-Hsuan.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号