首页> 外文学位 >Modeling weldment macro- and microstructure from fundamentals of transport phenomena and phase transformation theory.
【24h】

Modeling weldment macro- and microstructure from fundamentals of transport phenomena and phase transformation theory.

机译:根据运输现象和相变理论的基础对焊件的宏观和微观结构进行建模。

获取原文
获取原文并翻译 | 示例

摘要

The weldment macro and microstructures were modeled based on the fundamentals of transport phenomena and phase transformation theory. A three dimensional (3D) turbulent heat transfer and fluid flow model was developed to calculate temperature and velocity fields, the weld geometry, and the thermal cycles in the weldment. The phase transformations during welding were calculated by coupling available phase transformation models with the calculated thermal cycles. A 3D Monte Carlo (MC) based grain growth simulation model was developed and coupled with the calculated thermal cycles to simulate the grain growth in the entire heat affected zone (HAZ).; To check the capabilities of the developed models, several cases were studied, which included (1) weld metal macro and microstructures of HSLA-100 steel using gas-metal-arc (GMA) welding, (2) weld metal microstructure of C-Mn steel produced by gas-tungsten-arc (GTA) welding, and (3) macro and microstructures in the GTA welded commercially pure titanium weldment. The calculated results were compared with the experimental data.; Through the present study, it was found that the computed values of turbulent viscosity and thermal conductivity were much higher than the corresponding molecular values, which indicated that the transport of heat and momentum in the weld pool was significantly aided by turbulence. The weld geometry from both GMA welding and GTA welding can be satisfactorily predicted from the present model. Specially, the “Finger penetration”, a unique weld geometric feature in GMA welding, was well predicted. The predicted cooling rates agreed well with the corresponding experimental data. The phase volume fractions in the steel welds can be well predicted by coupling the calculated cooling rates with the continuous-cooling-transformation (CCT) diagrams from an available phase transformation model. The predicted spatial phase distribution in the commercially pure titanium weldments was found in good agreement with the real-time experimental results. The salient features of the grain growth in the entire HAZ has been effectively simulated by coupling the 3D MC model with the 3D thermal model. The capability of the 3D MC model to quantitatively predict the spatial distribution of grain size in the HAZ of commercially pure titanium has been tested for different welding conditions. The agreement between the calculated and experimental results in this thesis indicates significant promise for modeling weldment macro and microstructure from fundamentals of transport phenomena and phase transformation theory.
机译:基于运输现象和相变理论的基础,对焊件的宏观和微观结构进行建模。建立了三维(3D)湍流传热和流体流动模型,以计算温度和速度场,焊缝几何形状以及焊件中的热循环。通过将可用的相变模型与计算出的热循环耦合,可以计算出焊接过程中的相变。开发了一个基于3D蒙特卡洛(MC)的晶粒长大模拟模型,并与计算出的热循环相结合,以模拟整个热影响区(HAZ)中的晶粒长大。为了检查开发模型的功能,研究了几种情况,其中包括(1)使用气-金属电弧(GMA)焊接的HSLA-100钢的焊接金属宏观和微观结构,(2)C-Mn的焊接金属微观结构钨极氩弧焊(GTA)焊接产生的钢,以及(3)GTA焊接的商业纯钛焊件中的宏观和微观结构。计算结果与实验数据进行比较。通过本研究,发现湍流粘度和热导率的计算值比相应的分子值高得多,这表明湍流显着辅助了焊接池中的热量和动量传递。可以从本模型令人满意地预测来自GMA焊接和GTA焊接的焊缝几何形状。特别地,“手指熔深”是GMA焊接中独特的焊缝几何特征,因此得到了很好的预测。预测的冷却速率与相应的实验数据吻合良好。通过将计算的冷却速率与可用相变模型中的连续冷却转变(CCT)图耦合,可以很好地预测钢焊缝中的相体积分数。发现商业纯钛焊件中的预测空间相分布与实时实验结果非常吻合。通过将3D MC模型与3D热模型耦合,可以有效地模拟整个HAZ中晶粒生长的显着特征。已经针对不同的焊接条件测试了3D MC模型定量预测商业纯钛HAZ中晶粒尺寸的空间分布的能力。本文的计算结果与实验结果之间的一致性表明,从传输现象的基础和相变理论出发,对焊件的宏观和微观结构进行建模具有重要的前景。

著录项

  • 作者

    Yang, Zhishang.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Materials Science.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号