首页> 外文学位 >Numerical modeling and experimental measurement of the thermal and mechanical properties of packed beds.
【24h】

Numerical modeling and experimental measurement of the thermal and mechanical properties of packed beds.

机译:填充床热力学性能的数值模拟和实验测量。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is to understand and obtain fundamental data on the thermal and mechanical behavior of a packed bed in the solid breeder blanket configuration. This is fulfilled through the following separate, but related efforts:; First, a 3D micro-mechanics model was developed to simulate the mechanical behavior of packed beds for different initial packing, particle size, normal stiffness, shear stiffness, friction coefficient, and coefficient of thermal expansion. The simulations indicate the following: (1) The stress-strain relationships of packed beds are non-linear. A portion of the deformation comes from the rearrangement of particles. (2) With a large friction coefficient, the packed bed behaves more like a solid. Conversely, for a small friction coefficient, the packed bed behaves more like a fluid. (3) An increase in the range of particle sizes leads to a decrease in stress and a lower effective deformation modulus. (4) The calculated deformation modulus is 2--3 orders of magnitude smaller than that of solid material and compares reasonably well with experimental data.; Second, a 3D micro-scale model was developed to predict the effective thermal conductivity of a packed bed based on the information of the bed microstructure, contact force, contact area, solid phase, gas phase, and radiation effects. The results indicate the following: (1) The effective thermal conductivity of metal beds could increase by a factor of 2--4 over a relatively small range of applied load (∼1MPa), which is mainly due to the increased interface contact conductance. (2) Under anisotropic load, a packed bed displays anisotropic behavior---different thermal conductivity along different directions, despite the initial packing being isotropic. (3) Good agreement was achieved between the model predictions and the experimental results that the author found in the literature.; Finally, a benchmark test article was constructed to measure the thermal stress induced by the thermal expansion mismatch between the packed bed and the cylindrical container. Measurements were performed for Al, Li2ZrO 3, Li4SiO4, and beryllium beds. An empirical correlation for the effective deformation modulus of particle beds was derived. The agreement between the experimental results and numerical predictions is very good.
机译:这项工作的目的是了解和获得有关固体育种毯配置中填充床的热和机械性能的基本数据。这可以通过以下单独但相关的工作来实现:首先,开发了3D微力学模型来模拟不同初始填充,颗粒大小,法向刚度,剪切刚度,摩擦系数和热膨胀系数的填充床的力学行为。仿真表明:(1)填充床的应力-应变关系是非线性的。变形的一部分来自粒子的重排。 (2)摩擦系数大时,填充床的行为更像固体。相反,对于较小的摩擦系数,填充床的行为更像流体。 (3)粒径范围的增加导致应力的降低和有效变形模量的降低。 (4)计算得出的变形模量比固体材料小2--3个数量级,并且与实验数据比较合理。其次,基于床的微观结构,接触力,接触面积,固相,气相和辐射效应的信息,开发了3D微型模型来预测填充床的有效导热系数。结果表明:(1)在相对较小的施加载荷范围(〜1MPa)内,金属床层的有效导热系数可以提高2--4倍,这主要是由于界面接触电导率的提高。 (2)在各向异性载荷下,尽管初始填充是各向同性的,但填充床仍表现出各向异性行为-沿不同方向的导热率不同。 (3)模型预测与作者在文献中发现的实验结果之间取得了很好的一致性。最后,构造了基准测试制品以测量由填充床和圆柱形容器之间的热膨胀失配引起的热应力。对Al,Li 2 ZrO 3,Li4SiO4和铍床进行了测量。得出了颗粒床有效变形模量的经验相关性。实验结果与数值预测之间的一致性很好。

著录项

  • 作者

    Lu, Zi.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.; Engineering Nuclear.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;原子能技术;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号