首页> 外文学位 >Homogenization based damage models for monotonic and cyclic loading in three-dimensional composite materials.
【24h】

Homogenization based damage models for monotonic and cyclic loading in three-dimensional composite materials.

机译:基于均质化的三维复合材料单调和循环载荷损伤模型。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation develops a three dimensional homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is simulated using a hysteretic bilinear cohesive zone model. The proposed HCDM model expresses a damage evolution surface in the strain space in the principal damage coordinate system (PDCS). PDCS enables the model to account for the effect of non-proportional load history. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensor. The HCDM model parameters are calibrated from homogenized micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing the CDM results with homogenized micromechanical response of single and multiple fiber RVEs subjected to arbitrary loading history. Finally the HCDM model is incorporated in a macroscopic finite element code to conduct damage analysis in structures. The effect of different microstructures on the macroscopic damage progression is examined through this study.;To efficiently simulate the dynamic response of heterogeneous microstructures, an assumed stress hybrid Voronoi Cell Finite Element Method (VCFEM) for stress wave propagation is developed. In the proposed formulation, stresses in the domain and compatible displacements at the element boundary are approximated independently. The inertia field is approximated in terms of stresses so as to satisfy the equilibrium a-priori. The weak forms of kinematics and traction reciprocity are obtained by minimization of the complementary variational principle. As stress wave is a local disturbance, localization and multi-resolution properties of the wavelet functions are exploited to adaptively enrich the stress functions locally near the wave front. At the outset, a stable, accurate, and computationally efficient adaptive computational framework is developed for micromechanical response of composites under impact loading. The effectiveness of the proposed method is demonstrated through comparison with conventional FEM packages.
机译:本文针对纤维增强复合材料在单调和循环载荷作用下受到微机械损伤,建立了基于三维均质化的连续介质损伤力学模型。材料的代表性体积元素(RVE)中的微机械损伤是通过纤维-基体界面剥离而发生的,这是使用滞回双线性内聚区模型进行模拟的。提出的HCDM模型在主损伤坐标系(PDCS)中表示应变空间中的损伤演化表面。 PDCS使模型能够考虑非比例载荷历史的影响。物质本构定律涉及具有刚性的四阶正交各向异性张量,其特征是宏观内部变量。根据宏观应变和弹性刚度张量的分量,通过四阶损伤张量的功能形式解释了复合材料中的三维损伤。 HCDM模型参数是从RVE的均质化微机械解决方案中针对一些代表性应变历史进行校准的。通过将CDM结果与承受任意载荷历史的单纤维和多纤维RVE的均质化微机械响应进行比较,验证了所提出的模型。最后,HCDM模型被并入到宏观有限元代码中,以进行结构的损伤分析。通过这项研究,研究了不同微观结构对宏观损伤进展的影响。为了有效地模拟异质微观结构的动力响应,开发了一种假定的应力混合Voronoi细胞有限元方法(VCFEM)来进行应力波传播。在提出的公式中,区域中的应力和单元边界处的兼容位移是独立估算的。惯性场根据应力来近似,从而满足平衡先验。运动学和牵引互易性的弱形式是通过最小化互补变分原理获得的。由于应力波是局部扰动,因此利用小波函数的局部化和多分辨率属性来自适应丰富波前附近的应力函数。首先,针对复合材料在冲击载荷下的微机械响应,建立了稳定,准确,计算高效的自适应计算框架。通过与常规FEM软件包进行比较,证明了该方法的有效性。

著录项

  • 作者

    Jain, Jayesh R.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:37:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号