首页> 外文学位 >Damage and fracture in monotonic and cyclic loading of cross-woven carbon/silicon carbide composites.
【24h】

Damage and fracture in monotonic and cyclic loading of cross-woven carbon/silicon carbide composites.

机译:交织碳/碳化硅复合材料的单调和循环载荷的破坏和断裂。

获取原文
获取原文并翻译 | 示例

摘要

Textile composites such as cross-woven composites possess a far more complex structure than the well-studied unidirectional and cross-ply types of composite, since the making of the textile cross-woven composites involves interlacing of fiber bundles and laying-up of fabric laminates. It is of great importance to understand the influence of the complex structures on the mechanical response in cross-woven composites in terms of damage and damage development. In the present study, the microstructure of a cross-woven C/SiC ceramic composite was characterized. The damage and fracture of the composite subject to tension, compression and cyclic tension were investigated. Due to the weaving of the carbon fiber bundles, the SiC matrix was found to be distributed inhomogeneously in the fiber bundle. The chemical vapor infiltration (CVI) processing of the composite produced cracked SiC coatings in the composite. Under monotonic tensile loading, the composite showed six modes of damage, which include (1) matrix cracking, (2) transverse bundle cracking, (3) interfacial debonding/sliding, (4) fiber breaking, (5) ply delamination, and (6) bundle splitting. The development of those damage modes, especially matrix crack multiplication, led to a largely nonlinear stress-strain behavior and caused the composite modulus to decrease substantially during tensile loading. Associated with those damage modes and the complex composite structures, four types of bundle fracture surfaces were found in monotonic tensile loading. The damage modes in cyclic loading (pulsating tension) were similar to those in monotonic tension except that an additional wear mechanism of damage, produced by cycling, was identified in the internal structure of the composite. Under repeated tensile loading, those fatigue damage modes developed in a subtle manner, leading to gradual increase in cyclic elapsed strain and decrease in composite modulus. Fatigue failure of the composite occurred at high fatigue stress levels where continued fiber fracture took place in the composite. This study clearly demonstrated that the architecture and the microstructure of the composite have a profound effect on the damage and fracture mechanisms under the loading conditions performed in this study.
机译:纺织复合材料(例如,交织复合材料)的结构要比经过研究的单向和交叉层类型的复合材料复杂得多,因为纺织交织复合材料的制造涉及纤维束的交织和织物层压板的铺设。从破坏和破坏发展的角度,了解复杂结构对交织复合材料机械响应的影响非常重要。在本研究中,表征了交织C / SiC陶瓷复合材料的微观结构。研究了复合材料在拉伸,压缩和循环拉伸下的破坏和断裂。由于碳纤维束的编织,发现SiC基体在纤维束中不均匀地分布。复合材料的化学气相渗透(CVI)处理在复合材料中产生了破裂的SiC涂层。在单调拉伸载荷下,复合材料表现出六种破坏模式,包括(1)基体开裂,(2)横向束开裂,(3)界面脱粘/滑动,(4)纤维断裂,(5)层剥离和( 6)束分裂。这些损伤模式的发展,尤其是基体裂纹的扩展,导致了很大程度的非线性应力-应变行为,并导致复合模量在拉伸载荷期间大大降低。与这些破坏模式和复杂的复合结构相关,在单调拉伸载荷中发现了四种类型的束断裂面。循环载荷(脉动张力)中的损伤模式与单调张力中的损伤模式相似,不同的是,在复合材料的内部结构中发现了由循环产生的附加损伤磨损机理。在反复的拉伸载荷下,那些疲劳损伤模式以微妙的方式发展,导致循环的应变逐渐增加而复合模量降低。复合材料的疲劳破坏发生在高疲劳应力水平,在复合材料中纤维持续断裂。这项研究清楚地表明,复合材料的结构和微观结构对本研究中的载荷条件下的破坏和断裂机理具有深远的影响。

著录项

  • 作者

    Wang, Mingde.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.; Textile Technology.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;轻工业、手工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号