首页> 外文学位 >The exergy of thermal radiation and its relevance in solar energy conversion.
【24h】

The exergy of thermal radiation and its relevance in solar energy conversion.

机译:热辐射的火用及其在太阳能转换中的意义。

获取原文
获取原文并翻译 | 示例

摘要

Driven by the importance of optimizing energy systems and technologies, the field of exergy analysis was developed to better illuminate process inefficiencies and evaluate performance. Exergy analysis provides important information and understanding that cannot be obtained from energy analysis. The field of exergy analysis is well formulated and understood except for thermal radiation (TR) heat transfer. The exergy flux, or maximum work obtainable, from TR has not been unambiguously determined. Moreover, many thermodynamic textbooks are misleading by incorrectly implying that the entropy and exergy transport with TR is calculated by using the same expressions that apply to heat conduction.; Research on the exergy of TR was carried out by Petela. However, many researchers have considered Petela's analysis of the exergy of TR to be irrelevant to the conversion of TR fluxes. Petela's thermodynamic approach is considered irrelevant because, others argue, that it neglects fundamental issues that are specific to the conversion of fluxes, issues that are unusual in the context of exergy analysis. The purpose of the research in this thesis is to determine, using fundamental thermodynamic principles, the exergy flux of TR with an arbitrary spectrum and its relevance to solar radiation (SR) conversion.; In this thesis it is shown that Petela's result can be used for the exergy flux of blackbody radiation (BR) and represents the upper limit to the conversion of SR approximated as BR. The thesis shows this by resolving a number of fundamental issues: (1) Inherent Irreversibility; (2) Definition of the Environment; (3) Inherent Emission; (4) Threshold Behaviour; (5) Effect of Concentrating TR. This thesis also provides a new expression, based on inherent irreversibility, for the exergy flux of TR with an arbitrary spectrum. Previous analysis by Karlsson assumes that reversible conversion of non-blackbody radiation (NBR) is theoretically possible, whereas this thesis presents evidence that NBR conversion is inherently irreversible.; In addition the following conclusions and contributions are made in the thesis: (1) Re-stated the general entropy and exergy balance equations for thermodynamic systems so that they correctly apply to TR heat transfer. (2) Provided second-law efficiencies for common solar energy conversion processes such as single-cell Photovoltaics. (3) Showed that Omnicolor (infinite cell) conversion, the widely held ideal conversion process for SR, is not ideal by explaining its non-ideal behaviour in terms of exergy destruction and exergy losses. (4) Presented an ideal (reversible) infinite stage thermal conversion process for BR fluxes and presented two-stage thermal conversion as a practical alternative. (5) Showed that Prigogine's minimum entropy production principle cannot be used as a governing principle in atmospheric modeling, and that in general, it may have little significance. (6) Presented a graybody model of the planet that may prove useful in understanding the thermodynamics of the Earth system. (7) Showed that the expression derived from the Clausius equality for reversible processes is applicable, whereas the statement for irreversible processes is not applicable, when there is significant heat transfer by TR. (8) Showed that the 4/3 coefficient in the BR entropy expression can be obtained by simply using the concept of equilibrium and the experimentally observable relationship for BR energy (energy ∝ T4).
机译:由于优化能源系统和技术的重要性,火用分析领域的发展是为了更好地阐明工艺效率低下和评估性能。火用分析提供了重要的信息和理解,而这些信息和理解是无法从能量分析中获得的。除了热辐射(TR)传热以外,火用分析领域的公式也很完善,也很容易理解。尚未明确确定从TR得出的火用通量或可得到的最大功。而且,许多热力学教科书误导了TR的熵和能移是通过使用与热传导相同的表达式来计算的,从而产生误导。 Petela对TR的能级进行了研究。但是,许多研究人员认为Petela对TR能级的分析与TR通量的转换无关。佩特拉的热力学方法被认为是无关紧要的,因为其他人认为,它忽略了通量转换所特有的基本问题,在火用分析中不常见。本文的研究目的是利用基本的热力学原理确定具有任意光谱的TR的火能通量及其与太阳辐射(SR)转换的相关性。本文证明了佩特拉的结果可用于黑体辐射(BR)的本能通量,并表示SR的转换上限,近似为BR。本文通过解决一些基本问题来说明这一点:(1)固有的不可逆性; (2)环境的定义; (3)固有发射; (4)门限行为; (5)集中TR的效果。本文还基于固有的不可逆性,为任意光谱的TR的能级通量提供了一种新的表达式。 Karlsson先前的分析假设非黑体辐射(NBR)的可逆转换在理论上是可能的,而本论文提供了NBR转换固有地不可逆的证据。此外,论文还得出以下结论和贡献:(1)重新描述了热力学系统的一般熵和(火用)平衡方程,以便它们正确地应用于TR传热。 (2)为普通太阳能转换过程(例如单电池光伏)提供第二定律效率。 (3)通过从火用能破坏和火用损失方面解释其非理想行为,表明Omnicolor(无限单元)转换是SR广泛持有的理想转换过程,因此不是理想的选择。 (4)提出了一种理想的(可逆的)BR磁通无限级热转换过程,并提出了两步热转换作为一种实用的替代方法。 (5)表明Prigogine的最小熵产生原理不能用作大气建模的控制原理,一般而言,它的意义不大。 (6)提出了行星的灰体模型,可能有助于理解地球系统的热力学。 (7)表明,当TR大量传热时,可逆过程的克劳修斯等式导出的表达式适用,而不可逆过程的陈述不适用。 (8)表明BR熵表达式中的4/3系数可以通过简单地使用平衡概念和实验观察到的BR能量(能量∝ T 4 )。

著录项

  • 作者

    Wright, Sean Edward.;

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Engineering Mechanical.; Physics General.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 p.5533
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号