首页> 外文学位 >Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control.
【24h】

Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control.

机译:用于天然气/柴油双燃料发动机污染控制的逆流催化转化器的实验和建模研究。

获取原文
获取原文并翻译 | 示例

摘要

The desire to reduce urban air pollution and petroleum consumption has renewed interest in the development of natural gas vehicles. The natural gas/diesel dual fuel engine is one of the practical ways to apply natural gas to the conventional diesel engines. Compared to the conventional diesel engines, natural gas/diesel dual fuel engines emit very low NOx and carbon soot to the air. However, poor fuel utilization efficiencies and higher emissions of HC and CO may be encountered at light loads. This study focuses on HC and CO control for the natural gas/diesel dual fuel engines at light loads.; A reverse flow catalytic converter has been developed to complement dual fuel engine exhaust characteristics. This study consists of experimental measurement and numerical simulation of reverse flow catalytic converters. It shows that reverse flow can establish a high reactor temperature even when the engine is run with low exhaust temperature level at light loads. The reactor temperature rise from reverse flow could be two or three times higher than the adiabatic temperature rise, which is based on the reactor inlet temperature and concentration. This temperature allows more than 90% of the HC and CO to be converted with a palladium based catalyst. It proved that the reverse flow is an approach superior to the conventional unidirectional flow to deal with natural gas/diesel dual fuel engine pollution at light loads.; During the engine mode transition, reverse flow could have a special “heat trap” effect. Depending on the HC and CO concentration, it can develop reactor temperature, maintain reactor temperature, or slow down reactor temperature drop. Reverse flow could maintain reactor temperature over 800 K and HC conversion about 80% during 6-Mode test. The reverse flow switch time is evaluated from 5 to 240 second, it shows that the short switch time from 15 to 30 second is good for the engine tested.; A one dimensional single channel model is established to simulate both unidirectional flow and reverse flow reactor performance. The model can simulate the reactor performance with reasonable accuracy. Both CO and methane oxidation over palladium catalyst in an excess oxygen and water are described using apparent first order kinetics. The modified Voltz kinetics is in fact equivalent to first order rate expressions under conditions used in the reactor. The catalyst undergoes an apparent transition at a temperature in the region of 874 K, at which point the apparent activation energy decreased dramatically.
机译:减少城市空气污染和石油消耗的愿望重新引起了人们对天然气汽车发展的兴趣。天然气/柴油双燃料发动机是将天然气应用于常规柴油发动机的实用方法之一。与常规柴油发动机相比,天然气/柴油双燃料发动机向空气排放的NOx和碳烟非常低。但是,在轻负载下可能会遇到较差的燃料利用效率以及较高的HC和CO排放。这项研究的重点是轻负载下天然气/柴油双燃料发动机的HC和CO控制。已经开发出逆流催化转化器以补充双燃料发动机的排气特性。这项研究包括逆流催化转化器的实验测量和数值模拟。结果表明,即使发动机在轻负载下以较低的排气温度运行时,逆流也可以使反应堆温度升高。基于逆流的反应器温度升高可能是绝热温度升高的两倍或三倍,后者是基于反应器入口温度和浓度而定的。该温度允许使用钯基催化剂转化90%以上的HC和CO。事实证明,在轻载条件下,逆流是一种优于传统单向流的方法,可以解决天然气/柴油双燃料发动机的污染。在发动机模式转换期间,逆流可能会产生特殊的“热陷阱”效果。根据HC和CO的浓度,它可以提高反应器温度,维持反应器温度或减慢反应器温度下降。在六模式测试期间,逆流可保持反应堆温度超过800 K,HC转化率约为80%。逆流切换时间为5到240秒,表明从15到30秒的短切换时间对测试的发动机是有利的。建立一维单通道模型以模拟单向流和逆流反应器性能。该模型可以以合理的精度模拟反应堆性能。使用表观一级动力学描述了在过量氧气和水中钯催化剂上的CO和甲烷氧化。实际上,在反应器中使用的条件下,改进的沃尔兹动力学等于一级速率表达式。催化剂在874 K左右的温度下发生表观转变,此时表观活化能急剧下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号