首页> 外文学位 >Electron spectroscopic studies on the growth mechanism of oxide on aluminum surfaces exposed to water vapour.
【24h】

Electron spectroscopic studies on the growth mechanism of oxide on aluminum surfaces exposed to water vapour.

机译:电子光谱研究暴露于水蒸气的铝表面上氧化物的生长机理。

获取原文
获取原文并翻译 | 示例

摘要

The initial stages of the interaction of water vapour with polycrystalline aluminum surfaces at room temperature have been studied using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The effects of water vapour pressure on oxidation kinetics of aluminum have been examined in great detail in a pressure range from 1.0 × 10−6 to 6.5 × 10−4 Pa. The growth of thin oxide films on aluminum surfaces has been found to follow the Cabrera-Mott inverse logarithmic kinetics law at all pressures studied. The formation reaction of metal vacancies at the oxide film/gas interface is shown to be the rate determining process in the oxidation kinetics of aluminum. The formation of an aluminum hydride at the metal/oxide film interface is also found, which is associated with an oxidation process involving an incorporation of hydroxyl groups into the oxide structure. The pressure of water vapour is shown to have a major effect on initial stages of water adsorption and oxide nucleation as well as the oxide structure on aluminum surfaces.; The oxidation kinetics of Mg-, Si- and Fe-implanted aluminum have been studied at room temperature using the XPS technique with a view to better understanding the role of near-interface impurity in the oxidation process. These elements were implanted into high-purity aluminum at low ion doses ranging from 6.0 × 1012 to 3.6 × 1013 ions·cm −2. Increased surface concentration of Si and Mg implants causes an increase and a decrease, respectively, in the rate of initial oxide coalescence as well as in subsequent oxide growth. Implanted Fe does not cause any change in the oxidation rate of aluminum. The oxidation kinetics of implanted aluminum can be explained on basis of the metal vacancies as dominant defects in the oxide films.; The effects of energy and doses of Ar+ ion bombardment on oxidation kinetics have also been examined in the energy range 1–5 keV and ion dose ranging from 1.3 × 1016 to 3.8 × 1017 ions · cm−2 using AES and XPS. There is a threshold dose of Ar+ ions, above which the surface activity become significantly reduced, which is ascribed to a cluster formation blocking the surface diffusion pathway in the near-surface region. Finally, the oxidation kinetics of aluminum have been studied in a range of temperature from room temperature up to 573 K using the AES technique. As the temperature increases, the oxidation rate of aluminum decreases due to a decrease of sticking probability of water molecules as well as a decrease in the density of oxide islands. The temperature dependence of oxidation kinetics suggested a precursor mechanism for the water desorption. It has been also suggested that the growth of oxide islands in diameter is controlled by the diffusion of hydroxyl groups on aluminum surfaces.
机译:使用俄歇电子能谱(AES)和X射线光电子能谱(XPS)研究了室温下水蒸气与多晶铝表面相互作用的初始阶段。在1.0×10 -6 至6.5×10 -4 Pa的压力范围内,已经详细研究了水蒸气压力对铝氧化动力学的影响。已经发现,在所有研究压力下,铝表面上薄膜的生长都遵循Cabrera-Mott对数动力学逆定律。氧化膜/气体界面处金属空位的形成反应被证明是铝氧化动力学中的速率决定过程。还发现在金属/氧化物膜界面处形成氢化铝,这与涉及将羟基结合到氧化物结构中的氧化过程有关。已显示水蒸气压力对水吸附和氧化物成核的初始阶段以及铝表面的氧化物结构有重要影响。为了更好地了解近界面杂质在氧化过程中的作用,已在室温下使用XPS技术研究了注入Mg,Si和Fe的铝的氧化动力学。将这些元素以6.0×10 12 至3.6×10 13 离子·cm -2 的低离子剂量植入高纯度铝中。 。 Si和Mg植入物表面浓度的增加分别引起初始氧化物结合速率和随后的氧化物生长速率的增加和减少。注入的铁不会引起铝的氧化速率的任何变化。可以根据金属空位作为氧化膜中的主要缺陷来解释注入的铝的氧化动力学。还研究了能量和剂量的Ar + 离子轰击在1-5 keV的能量范围和1.3×10 16 的离子剂量范围内对氧化动力学的影响。使用AES和XPS可以得到3.8×10 17 离子·cm −2 。存在阈值剂量的Ar + 离子,高于该阈值剂量时,表面活性显着降低,这归因于簇结构阻碍了近表面区域中的表面扩散途径。最后,使用AES技术研究了铝在从室温到573 K的温度范围内的氧化动力学。随着温度升高,由于水分子的粘附可能性降低以及氧化物岛的密度降低,铝的氧化速率降低。氧化动力学的温度依赖性提出了水解吸的前体机理。还已经提出,直径上氧化物岛的生长是通过铝表面上羟基的扩散来控制的。

著录项

  • 作者

    Do, Than.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号