首页> 外文学位 >Deposit formation dynamics and microstructure development during thermal spraying.
【24h】

Deposit formation dynamics and microstructure development during thermal spraying.

机译:热喷涂过程中的沉积物形成动力学和微结构发展。

获取原文
获取原文并翻译 | 示例

摘要

In this investigation, experimental approach was integrated with theoretical to study the physics of splat formation process and deposit microstructure development in thermal spraying.;Splat morphology is significantly affected by droplet/substrate interaction although droplet fragmenting tendency increases fundamentally with droplet Reynolds number and Weber number. Improved droplet/substrate contact facilitates contiguous splat formation, whereas localized substrate melting/deformation promotes splat fragmentation as exemplified by molybdenum splat break-up due to steel substrate melting. Condensates and adsorbates on substrate surface lead to large degree of splat fragmentation at low temperature, while they are reduced/eliminated at temperatures above 200 C. The cleaning of substrate surface associated with substrate heating is the dominant factor for the splat morphology change with substrate temperature.;Solidification can significantly affect splat dimensions through the arresting of droplet spreading as in the case of molybdenum droplet on steel or molybdenum substrate where Solidification time scale is significantly shorter than the droplet spreading time scale. In systems such as molybdenum on glass substrate or zirconia on steel substrate, splat dimension is basically determined by the viscous dissipation of droplet kinetic energy.;Significant substrate deformation is assisted by the softening/melting of the substrate. In the case of molybdenum droplets on a stainless steel substrate, the normalized crater volume is proportional to droplet kinetic energy and heat input carried by the droplet. Alloying enhances the splat/substrate contact.;Droplets form less fragmented splats on preheated, roughened substrate. Subsequently arriving droplet can form basically contiguous splat on top of them. Equiaxed pores and inter-laminar pores are produced as a result of trapped air underneath impinging droplet and splat curling respectively. Both types of porosity decreases with increase of deposition temperature and dramatically improved splat/splat adhesion, as well as enhanced properties is obtained. Deposit integrity, cohesion and properties are improved with increasing of particle kinetic energy and thermal energy. Particle kinetic energy is more responsible for the deposit densification, and thermal energy is responsible for improved splat/splat adhesion and coalescence of adjacent splats. High kinetic energy combined with high thermal energy is crucial to achieve low porosity, integrity and enhanced cohesion.
机译:在这项研究中,实验方法与理论相结合,研究了热喷涂过程中飞溅形成的物理过程和沉积物微结构的发展。;尽管液滴的破裂趋势随液滴的雷诺数和韦伯数从根本上增加,但液滴/基质之间的相互作用显着影响了飞溅的形态。 。改善的液滴/基材接触促进了连续的飞溅形成,而局部的基材熔化/变形促进了飞溅碎裂,例如由于钢基材熔化而导致的钼飞溅破裂。基板表面上的冷凝物和吸附物在低温下会导致大量的碎片破裂,而在高于200 C的温度下会被减少/消除。与基板加热相关的基板表面清洁是导致碎片形态随基板温度变化的主要因素..凝固可以通过阻止液滴扩散来显着影响splat尺寸,就像钼液滴在钢或钼基材上的情况一样,其中凝固时间尺度明显小于液滴扩散时间尺度。在诸如玻璃基板上的钼或钢基板上的氧化锆之类的系统中,飞溅的尺寸基本上由液滴动能的粘性耗散决定。基板的显着变形通过基板的软化/熔化来辅助。在不锈钢基板上的钼液滴的情况下,归一化的火山口体积与液滴的动能和液滴所携带的热量输入成比例。合金化可增强splat /基材的接触。小滴在预热,粗糙的基材上形成较少碎片的splat。随后到达的液滴可以在其顶部形成基本连续的飞溅。等轴孔和层间孔分别是由于撞击液滴下方的空气和飞溅而产生的。两种类型的孔隙率都随着沉积温度的升高而降低,并且显着改善了splat / splat的附着力以及增强的性能。随着颗粒动能和热能的增加,沉积物的完整性,内聚力和性能得到改善。颗粒动能对沉积物的致密化起更大的作用,而热能则对改善splat / splat的附着力和相邻splats的聚结负责。高动能和高热能对于实现低孔隙率,完整性和增强的内聚力至关重要。

著录项

  • 作者

    Jiang, Xiangyang.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号