首页> 外文学位 >Fracture initiation at two- and three-dimensional bimaterial interface corners.
【24h】

Fracture initiation at two- and three-dimensional bimaterial interface corners.

机译:在二维和三维双材料界面角处发生断裂。

获取原文
获取原文并翻译 | 示例

摘要

Microelectromechanical systems (MEMS) and microelectronics devices and their packages contain many multimaterial interface corners. They are often an inevitable byproduct of many bonding and encapsulation technologies that are used for the microassembly and packaging of accelerometers, pressure, tactile and flow sensors, and micropumps. These multimaterial interface corners are severe stress raisers and are often sites of failure initiation. At present, no approach exists to predict failure at such interface corners; the development of such an approach has been identified as one of the key challenges for highly-reliable microelectronics packaging.;We propose an approach to characterize fracture initiation from such two- and three-dimensional bimaterial interface corners, using a combination of analytical, numerical and experimental techniques. The approach is based on the universal singular stress field that exists at an interface corner in the context of linear elasticity, the magnitude of which is scaled by the corresponding stress intensities. The basic idea is to correlate fracture initiation at an interface corner with critical values of the stress intensities. The approach is in the spirit of interface fracture mechanics, but is applicable to a different, and arguably more technologically important class of problems; specifically, when no cracks exist (or can be observed economically), and when the crack runs into one of the adherends instead of along the interface. In order to validate the approach, we designed and fabricated silicon/glass anodically bonded specimens with different interface corner geometries that are commonly used in the microsensor industry resulting from different silicon etching techniques. We also designed and fabricated aluminum/epoxy specimens with different interface surface finishes. From a rigorous analysis of the stress state at the interface corner (where fracture initiates), the corresponding stress intensities were determined for the applied loading and far-field geometry. Mechanical fracture testing of the specimens showed that, although failure stresses varied significantly with specimen size, the corresponding critical stress intensity for a given interface corner geometry and surface preparation was constant, thus validating its use to correlate fracture initiation in a universal manner. This approach shows promise for many practical applications where the structural integrity of bonds is critical to design for long-term reliability.
机译:微机电系统(MEMS)和微电子设备及其封装包含许多多材料接口角。它们通常是用于加速计,压力,触觉和流量传感器以及微型泵的微型装配和包装的许多粘合和封装技术的不可避免的副产品。这些多材料界面拐角是严重的应力源,通常是引发故障的场所。目前,尚无任何方法可以预测此类界面拐角处的故障。这种方法的发展已被确定为高度可靠的微电子封装的主要挑战之一。我们提出了一种方法,该方法通过结合使用分析,数值方法从二维和三维双材料界面拐角处表征断裂的发生和实验技术。该方法基于线性弹性情况下存在于界面角处的通用奇异应力场,该应力场的大小由相应的应力强度缩放。基本思想是使界面拐角处的裂缝萌生与应力强度的临界值相关联。该方法本着界面断裂力学的精神,但适用于另一类,并且在技术上可能更重要的问题类别。具体而言,当不存在裂纹(或可以从经济上观察到)时,以及当裂纹碰到被粘物之一而不是沿着界面进入时。为了验证该方法,我们设计和制造了具有不同界面角几何形状的硅/玻璃阳极键合样品,这些样品通常因不同的硅刻蚀技术而在微传感器行业中使用。我们还设计和制造了具有不同界面光洁度的铝/环氧树脂样品。通过对界面拐角处(断裂开始处)的应力状态的严格分析,可以确定所施加的载荷和远场几何形状的相应应力强度。试样的机械断裂试验表明,尽管破坏应力随试样尺寸的变化而显着变化,但对于给定的界面角几何形状和表面处理,相应的临界应力强度是恒定的,因此验证了其以通用方式关联断裂起始的用途。这种方法在许多实际应用中显示出了希望,其中键的结构完整性对于设计长期可靠性至关重要。

著录项

  • 作者

    Labossiere, Paul Edward W.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号