首页> 外文学位 >Numerical modeling of coal-feedlot biomass blend combustion and nitric oxide emissions in swirl burner.
【24h】

Numerical modeling of coal-feedlot biomass blend combustion and nitric oxide emissions in swirl burner.

机译:煤-肥育场生物质混合燃烧和旋流燃烧器中一氧化氮排放的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Co-firing coal biomass blends in utility burners is emerging as a new and cost-effective technology to reduce pollution and associated costs. It has been found in recent studies that the interactions between coal and biomass help to maintain combustion stability and reduce harmful pollutant emissions. Nevertheless, the fundamental understanding of pollutant formation and destruction in blend combustion is still in its infancy and more work is needed in this direction.; In the work presented here, the biomass used is feedlot animal waste henceforth called feedlot biomass or FB. A computer code, PCGC-2 is modified to include the effects of FB co-firing on NOx emissions. The modifications include addition of a third mixture fraction in the NOx model to track biomass off-gas and inclusion of ammonia in the NO reaction scheme since biomass is believed to release more ammonia during devolatilization process. The combustion model is based on mixture fraction-equilibrium chemistry approach. A postprocessor is used to calculate NOx levels after calculating the major variables (temperature, major species, density, etc.).; Sensitivity analyses are carried out to determine the effect of key parameters on combustion behavior and NO emissions. The data is compared with the experimental measurements obtained in the small-scale 30 kW (100,000 Btu/hr) boiler burner facility at Texas A&M. In general, good agreement is found. The key sensitivity parameters are excess air percentage (0--20%), swirl number (0--3), moisture in feedlot biomass (6--40%) and particle size of feedlot biomass (100 mum--600 mum). NO emissions increase (190 ppm to 320 ppm for coal, 209 ppm to 315 ppm for blend) with increasing excess air percentage. Swirl plays an important role by changing the mixing pattern close to the burner mouth. It is found that NO increases with increasing swirl number (145 ppm to 305 ppm) except at 0% excess air where NO decreases from 140 ppm to 125 ppm as swirl number is increased from 0 to 0.6 and then NO increases from 125 ppm to 202 ppm as swirl number is increased from 0.6 to 1.4. Moisture does not play a major role. Its effect is almost negligible due to low co-firing ratio. Biomass particle size, on the other hand, has a significant effect on combustion behavior and NO emissions. Small particles burn faster and produce more NO close to the burner. Large particles take more time to heat up and release volatiles. These volatiles are thus released further downstream where an oxygen rich zone conspires to produce more NO. It was found that large particles produce more NO than small or medium sized particles. The radially averaged NO levels at burner exit depend on the peak radially averaged NO levels inside the combustor. Higher the peak value of NO inside the combustor, higher the exit NO since heterogeneous reduction kinetics is same.; The technology of co-firing coal and feedlot biomass in pulverized fuel furnaces shows good promise. No flame stability problems are encountered for smaller co-firing ratios. NO emissions are also reduced compared to the coal only firing.
机译:在公用燃烧器中共燃煤生物质混合物是一种新型的,具有成本效益的技术,可以减少污染和相关成本。在最近的研究中发现,煤与生物质之间的相互作用有助于维持燃烧稳定性并减少有害污染物的排放。尽管如此,对掺混燃烧中污染物形成和破坏的基本了解仍处于起步阶段,朝这个方向需要做更多的工作。在此处介绍的工作中,所使用的生物量为饲养场动物粪便,此后称为饲养场生物量或FB。修改了PCGC-2计算机代码,以包括FB共燃对NOx排放的影响。修改包括在NOx模型中添加第三种混合馏分以跟踪生物质废气,并在NO反应方案中包含氨气,因为据信生物质会在脱挥发分过程中释放出更多的氨气。燃烧模型基于混合物分数平衡化学方法。后处理器用于在计算出主要变量(温度,主要种类,密度等)之后计算NOx含量。进行了敏感性分析,以确定关键参数对燃烧行为和NO排放的影响。将该数据与在德州A&M的小型30 kW(100,000 Btu / hr)锅炉燃烧器中获得的实验测量结果进行比较。通常,可以找到良好的协议。关键的敏感度参数是过量空气百分比(0--20%),旋流数(0--3),肥育场生物量中的水分(6--40%)和肥育场生物量的粒径(100 mum--600 mum) 。随着过量空气百分比的增加,NO排放增加(煤炭为190 ppm至320 ppm,混合燃料为209 ppm至315 ppm)。涡流通过改变靠近燃烧器嘴的混合模式而起重要作用。已发现,NO随旋流数(145 ppm至305 ppm)的增加而增加,除了在0%的过量空气中,随着旋流数从0增加至0.6,然后NO从125 ppm增至202,NO从1​​40 ppm降至125 ppm。 ppm随着旋流数从0.6增加到1.4。水分不起作用。由于低的共烧比例,其效果几乎可以忽略不计。另一方面,生物质粒径对燃烧行为和NO排放有重大影响。小颗粒燃烧更快,并在燃烧器附近产生更多NO。大颗粒需要更多时间加热并释放挥发物。这些挥发物因此被释放到更下游的富氧区,从而产生更多的NO。发现大颗粒比中小颗粒产生更多的NO。燃烧器出口处的径向平均NO水平取决于燃烧室内部的径向平均NO水平峰值。燃烧室内的NO峰值越高,出口NO越高,因为异质还原动力学相同。在煤粉炉中混合燃烧煤和肥育场生物质的技术显示出良好的前景。对于较小的共燃比,不会遇到火焰稳定性问题。与仅燃煤相比,NO排放也减少了。

著录项

  • 作者

    Sami, Muhammad.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Mechanical.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号