首页> 外文学位 >Identification of aerodynamic coefficients with a neural network.
【24h】

Identification of aerodynamic coefficients with a neural network.

机译:用神经网络识别空气动力学系数。

获取原文
获取原文并翻译 | 示例

摘要

The components of a framework for the procurement, identification, and employment of aerodynamic coefficients are developed. The basic structure follows the estimation-before-modeling (EBM) technique. In the EBM methodology, state estimation and model determination are broken into two independent steps. An extended Kalman-Bucy filter and a modified Bryson-Frazier smoother are used to estimate state and force histories from a measurement vector. This data is used for maintenance of the aerodynamic mapping. The model satisfies the accuracy, smoothness, and differentiability requirements demanded by nonlinear control laws.; A-priori information drawn from the entire input-space is employed to establish a baseline model. Dynamic-system measurements are processed to provide the accurate state and force histories required for on-line updates of the identification model. An extended-Kalman Bucy filter provides state estimates and in combination with a random-walk model accurate force histories. A modified Bryson-Frazier smoother refines these estimates based on future measurements.; The identification scheme employs a neural network to provide models of aerodynamic coefficients during dynamic-system operation. These models are valid over the entire input-output space. Prior to flight, a-priori data is incorporated into a base neural network using a new design and training algorithm. This algorithm functions in the face of an eight-dimension input vector. During flight, the parameters of the base neural are fixed, and a second set of activation functions are available for learning the surface created by the difference between the base neural network and the current dynamic-system information. The new neural network is demonstrated on a longitudinal-motion aircraft model, with static and dynamic training data, and its training speed, accuracy, and parsimony abilities versus existing neural networks are established.; The identification framework is used to identify the three longitudinal-motion coefficients of a twin-jet, transport aircraft. A localized feature is introduced into the lift-coefficient surface and performance of the model. The network learns new information from the dynamic-training data patterns, without loss of information in regions distant from the dynamic maneuvers. Approximation performance is evaluated with respect to both training and generalization data sets.
机译:开发了空气动力学系数的采购,识别和使用框架的组成部分。基本结构遵循建模前估算(EBM)技术。在EBM方法中,状态估计和模型确定分为两个独立的步骤。扩展的Kalman-Bucy滤波器和改进的Bryson-Frazier平滑器用于从测量矢量估计状态和受力历史。该数据用于维护空气动力学映射。该模型满足非线性控制定律所要求的精度,平滑度和微分要求。从整个输入空间中提取的先验信息用于建立基线模型。处理动态系统测量值以提供识别模型在线更新所需的准确状态和作用力历史记录。扩展的Kalman Bucy滤波器提供状态估计,并与随机游走模型相结合,可提供精确的力历史记录。修改后的Bryson-Frazier平滑器会根据将来的测量结果来完善这些估算值。该识别方案采用神经网络在动态系统运行期间提供空气动力学系数模型。这些模型在整个输入/输出空间内有效。飞行之前,使用新的设计和训练算法将先验数据合并到基本神经网络中。该算法在面对八维输入向量时起作用。在飞行过程中,基本神经的参数是固定的,第二组激活函数可用于学习由基本神经网络和当前动态系统信息之间的差异创建的表面。在具有静态和动态训练数据的纵向运动飞机模型上演示了新的神经网络,并建立了相对于现有神经网络的训练速度,准确性和简约能力。识别框架用于识别双喷气运输机的三个纵向运动系数。局部特征被引入到升力系数表面和模型的性能中。网络从动态训练数据模式中学习新信息,而不会在远离动态操纵的区域中丢失信息。针对训练和泛化数据集评估了近似性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号