首页> 外文学位 >Adaptive control of lasers and their interactions with matter using femtosecond pulse shaping.
【24h】

Adaptive control of lasers and their interactions with matter using femtosecond pulse shaping.

机译:使用飞秒脉冲整形对激光器及其与物质的相互作用进行自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

Coherent control of chemical reactions, atomic and molecular systems, lattice dynamics, and electronic motion rely on femtosecond laser sources capable of producing programmable arbitrarily shaped waveforms. To enter the time scale of natural dynamic processes in many systems, femtosecond pulse shaping techniques must be extended to the ultrashort pulse domain (50 fs). Concurrently, reliable high-fidelity amplification of shaped waveforms is required in many applications. We demonstrate ultrabroad bandwidth pulse shaping of 13 fs pulses with Fourier-domain phase-only filtering using a liquid crystal array. We further demonstrate the amplification of shaped pulses in a multipass chirped pulse amplifier (CPA) system to produce millijoule-level optical waveforms with 30 fs resolution.; Recently, a new approach to coherent control of physical systems was introduced, which, instead of relying on formidable theoretical calculations of complex system dynamics, makes use of an appropriate experimental feedback from the system itself to control its evolution. We apply this adaptive feedback approach for enhancement of ionization rates in a femtosecond plasma with the goal of minimization of phase distortions in the amplifier system. With the help of a learning algorithm and survival principles of nature, we teach our laser to control its own phase by using spectral blueshifting in a rapidly created plasma as a feedback to the algorithm.; Control of lattice vibrations has long been sought as a means of studying phonon-related processes in solids. In addition, generation and control of large-amplitude optical phonon modes may open a path to femtosecond time-resolved studies of structural phase transitions and production of ultrashort shaped X-ray pulses. We perform pump-probe phase-resolved measurements and control of optical A1g mode in sapphire through shaped-pulse impulsive stimulated Raman scattering (ISRS). We chose this material as a candidate for possible nonlinear oscillations regime for its wide band gap and superior optical properties allowing for high-energy excitation. To enter a nonlinear regime, however, complex asymmetric multiple-pulse excitation is required. Therefore, we make a detailed proposal of the experimental adaptive feedback implementation for optimization of phonon amplitude based on the coherent probe scattering and a novel phase mask calculation algorithm for the real-time asymmetric pulse train generation.
机译:化学反应,原子和分子系统,晶格动力学以及电子运动的相干控制依赖于能够产生可编程任意形状波形的飞秒激光源。要输入许多系统中自然动态过程的时间标度,必须将飞秒脉冲整形技术扩展到超短脉冲域(<50 fs)。同时,在许多应用中都需要对波形进行可靠的高保真放大。我们演示了使用液晶阵列仅通过傅立叶域相位滤波实现的13 fs脉冲的超宽带脉冲整形。我们进一步演示了在多通道chi脉冲放大器(CPA)系统中对成形脉冲的放大,以产生分辨率为30 fs的毫焦耳级光波形。最近,引入了一种新的物理系统相干控制方法,该方法不再依赖复杂系统动力学的强大理论计算,而是利用系统本身的适当实验反馈来控制其演化。我们将这种自适应反馈方法应用于飞秒等离子体中的电离速率增强,目的是使放大器系统中的相位失真最小。借助于学习算法和自然生存原理,我们教激光通过使用快速创建的等离子体中的光谱蓝移作为算法的反馈来控制自己的相位。长期以来,一直寻求控制晶格振动作为研究固体中与声子有关的过程的一种方法。此外,大振幅光子模式的产生和控制可能为飞秒时间分辨的结构相变研究和超短形X射线脉冲的产生开辟道路。我们通过定形脉冲脉冲激发拉曼散射(ISRS)对蓝宝石中的光学 A 1g 模式进行泵浦探针相分辨测量和控制。我们选择这种材料作为其宽带隙和卓越的光学特性(可能允许高能量激发)的可能非线性振荡机制的候选者。但是,要进入非线性状态,需要复杂的不对称多脉冲激励。因此,我们针对相干探针散射和用于实时非对称脉冲序列生成的新型相位掩膜计算算法,针对声子振幅的优化提出了实验性自适应反馈实施方案的详细建议。

著录项

  • 作者

    Efimov, Anatoly.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Physics Optics.; Chemistry Physical.; Physics Condensed Matter.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 p.5941
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号