首页> 外文学位 >Heat transfer in integrated thermal microsystems.
【24h】

Heat transfer in integrated thermal microsystems.

机译:集成热微系统中的热传递。

获取原文
获取原文并翻译 | 示例

摘要

The motivation of this thesis work is to construct fundamental study of the heat transfer in micro-domain.; In the first part of the thesis work, a systematic framework for the application of semiconducting microthermoresistors has been established. Polycrystalline thin films based on two semiconducting materials, Si and Ge, have been utilized to fabricate microthermistors. The thermistors are designed in a heavy-light-heavy doping concentration arrangement. The design, fabrication, analysis and characterization of a variety of thermistors under different doping schemes are described. The operation of the thermistors in a self-heating mode is also discussed.; Next, The design and fabrication of an integrated microsystem consisting of microchannels with temperature microsensors are described for the study of heat-transfer properties of fluid flow in microdomains. Surface micromachining technology is used to construct the microchannels about 1.4μm in height. Polysilicon thermistors, 4μm x 4μm x 0.4μm in size are suspended across the channels and directly exposed to the fluid for local temperature measurements. The integrated microsystem performance is theoretically analyzed, and the various heat-transfer mechanisms involved are subsequently discussed. It has been clearly demonstrated that conduction is, by far, the dominant heat transfer mechanism in such micro systems.; A unique technique of mask-less and self-aligned silicon etch between bonded wafers is developed for the fabrication of a microchannel heat sink device. The integrated microsystem is consisting of heater and an array of temperature microsensors. The microsystem allows direct temperature measurements for different levels of power dissipation under forced convection using either nitrogen or water as the working fluid. The measured temperature field is used to characterize the micro heat sink performance under forced convection boiling conditions. The onset of critical heat flux condition is investigated for different channel sizes and liquid flow rates. The results suggest that the bubble dynamic mechanism in microchannel is different from conventional channels.; Furthermore, the device has also been used to study the transient behavior of a thermal microsystem. Both heating-up and cooling-down times due to a pulsed-current input are determined for natural and forced convection conditions. The device transient temperature response to a periodic input power is characterized for different flow rate and input power levels. The device response under natural convection is successfully modeled as a first-order system, while characteristics of a second-order system are observed in the device response under forced convection with liquid. Under certain operating conditions of temperature cycling, a large peak-peak temperature can be achieved without the device damage.; Finally, a transparent microchannel heat sink system was fabricated and characterized by bonding a glass to a silicon wafer. No boiling plateau has been observed in the boiling curves of microchannel heat sinks. Three boiling modes, depending on the input power level, have been distinguished during the flow visualizations. Local nucleation boiling within the microchannels was observed at low power level, while a stable annular flow mode was observed at high power level.
机译:本文工作的动机是构建微域传热的基础研究。在论文的第一部分,建立了半导体微热敏电阻应用的系统框架。基于两种半导体材料(Si和Ge)的多晶薄膜已用于制造微热敏电阻。热敏电阻采用轻重掺杂浓度设计。描述了在不同掺杂方案下各种热敏电阻的设计,制造,分析和特性。还讨论了热敏电阻在自加热模式下的操作。接下来,描述了由微通道和温度微传感器组成的集成微系统的设计和制造,用于研究微域中流体流动的传热特性。表面微机械加工技术用于构建高度约1.4μm的微通道。尺寸为4μmx4μmx0.4μm的多晶硅热敏电阻悬挂在通道之间,并直接暴露于流体中以进行局部温度测量。从理论上分析了集成微系统的性能,随后讨论了所涉及的各种传热机制。到目前为止,已经清楚地表明,在这种微型系统中,传导是主要的传热机制。开发了一种独特的无键合晶圆之间无掩模和自对准硅蚀刻技术,用于制造微通道散热器。集成的微系统由加热器和温度微传感器阵列组成。该微系统允许使用氮气或水作为工作流体,在强制对流下直接测量不同功耗水平的温度。测得的温度场用于表征强制对流沸腾条件下的微型散热器性能。对于不同的通道尺寸和液体流速,研究了临界热通量条件的发生。结果表明,微通道中的气泡动力学机制与常规通道不同。此外,该设备还用于研究热微系统的瞬态行为。确定自然和强制对流条件下由于脉冲电流输入而引起的加热时间和冷却时间。器件针对周期性输入功率的瞬态温度响应针对不同的流量和输入功率水平进行了表征。自然对流下的设备响应已成功地建模为一阶系统,而在液体强制对流下的设备响应中观察到了二阶系统的特性。在温度循环的某些操作条件下,可以达到较大的峰峰值温度,而不会损坏设备。最后,制造了透明的微通道散热器系统,其特征是将玻璃粘合到硅晶片上。在微通道散热器的沸腾曲线中未观察到沸腾平台。在流动可视化过程中,已根据输入功率水平区分了三种沸腾模式。在低功率水平下观察到微通道内的局部成核沸腾,而在高功率水平下观察到稳定的环形流动模式。

著录项

  • 作者

    Jiang, Linan.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Engineering Mechanical.; Engineering Electronics and Electrical.; Engineering Packaging.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业 ; 无线电电子学、电信技术 ; 包装工程 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号