首页> 外文学位 >Numerical models of starburst galaxies: Galactic winds and entrained gas.
【24h】

Numerical models of starburst galaxies: Galactic winds and entrained gas.

机译:星爆星系的数值模型:银河风和夹带气体。

获取原文
获取原文并翻译 | 示例

摘要

My three-dimensional hydro-dynamical simulations of starbursts examine the formation of starburst-driven superbubbles over a range of driving luminosities and mass loadings that determine superbubble growth and wind velocity; floors of both 10 and 10.;4 K are considered. From this I determine the relationshipbetween the velocity of a galactic wind and the characteristics of the starburst. I find a threshold for the formation of a wind, above which the wind speed is not affected by grid resolution or the temperature floor of the radiative cooling employed. Optically bright filaments form at the edge of merging superbubbles, or where a cold dense cloud has been disrupted by the wind. Filaments formed by merging superbubbles will persist and grow to >400 pc in length if anchored to and fed from a star forming complex. For galaxies viewed edge on I use total emission from the superbubble to infer the wind velocity and starburst properties such as thermalization efficiency and mass loading factor. Using synthetic absorption profiles I probe different temperature regimes and measure the velocity of the cold, warm and hot gas phases. I find that the cold and warm gas entrained in the wind move at a much lower velocity than the hot gas, with some of the cold gas in the filaments hardly moving with respect to the galaxy. The absorption profiles show that the velocity of the hot galactic outflow does not depend on the star formation rate (SFR), but the velocity of the warm gas does. The velocity of the warm gas scales as SFR.;delta untilthe wind velocity reaches 80 % of the analytic terminal wind speed. The value of delta depends on the atomic ionization with a lower value for low ionization, and a higher value for higher ionization.
机译:我对星爆进行的三维流体动力学模拟研究了在决定超气泡生长和风速的一系列驱动光度和质量载荷下,由星爆驱动的超级气泡的形成。同时考虑10和10.; 4 K的楼层。据此,我确定了银河风的速度与星爆特征之间的关系。我找到了形成风的阈值,在该阈值之上,风速不受网格分辨率或所采用辐射冷却的温度下限的影响。在合并的超级气泡的边缘,或冷的浓云已被风破坏的地方,形成了明亮的细丝。如果将其融合并形成恒星,则由合并的超级气泡形成的长丝将持续存在,并且长度将增长到> 400 pc。对于星系边缘,我使用超级气泡的总发射来推断风速和星爆特性,例如热效率和质量载荷因子。通过使用合成吸收曲线,我可以探测不同的温度范围,并测量冷,热和热气相的速度。我发现,夹带在风中的冷热气体的移动速度比热气低得多,细丝中的一些冷气几乎不会相对于银河系移动。吸收曲线表明,热的银河外流的速度不取决于恒星形成率(SFR),而热气的速度则取决于恒星的形成速度。直到风速达到最终分析风速的80%为止,暖气的速度才按SFR.δ换算。 δ的值取决于原子电离,对于低电离,较低的值,对于较高电离,较高的值。

著录项

  • 作者

    Tanner, Ryan.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Astrophysics.;Astronomy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号