首页> 外文学位 >An integrated aerodynamic-ramp-injector/plasma-torch-igniter for supersonic combustion applications with hydrocarbon fuels.
【24h】

An integrated aerodynamic-ramp-injector/plasma-torch-igniter for supersonic combustion applications with hydrocarbon fuels.

机译:集成的气动坡道喷油器/等离子炬点火器,用于碳氢燃料的超音速燃烧应用。

获取原文
获取原文并翻译 | 示例

摘要

The first integrated, flush-wall, aero-ramp-fuel-injector/plasma-torch igniter and flame propagation system for supersonic combustion applications with hydrocarbon fuels was developed and tested. The main goal of this project was to develop a device which could be used to demonstrate that the correct placement of a plasma-torch-igniter/flame-holder in the wake of the fuel jets of an aero-ramp injector array could make sustained, efficient supersonic combustion with low losses and thermal loading possible in a high enthalpy environment.; The first phase of the research effort was conducted at Mach 3.0 at a static pressure and temperature of 0.19 atm and 101 K. This phase involved component analyses to improve on the designs of the aero-ramp and plasma-torch as well as address integration and incorporation difficulties. The information learned from these experiments lead to the creation of the first prototype integrated aero-ramp/plasma torch design featuring a new simplified four-hole aero-ramp design.; The second phase of the project consisted of experiments at Mach 2.4 involving a cold-flow mixing evaluation of the new aero-ramp design and a resizing of the device for incorporation into a scramjet flow path test rig at the Air Force Research Laboratories (AFRL). Experiments were performed at a static pressure and temperature of 0.25 atm and 131 K, and at injector-jet to freestream momentum flux ratios ranging from 1.0 to 3.3. Results showed the aero-ramp to mix at a considerably faster rate than the injector used in the AFRL baseline combustor configuration due to high levels of vorticity created by the injector array.; The last phase of the research involved testing the final device design in a cold-flow environment at Mach 2.4 with ethylene fuel injection and an operational plasma torch with methane, nitrogen, a 90-percent nitrogen 10-percent hydrogen (by volume) mixture, and air feedstock gases. Experiments were performed with injector jet to freestream momentum flux ratios ranging from 1.4 to 3.3, and 1.2 with the plasma torch at a nominal power level 2000 watts. Overall, the final integrated design showed a high mixing efficiency and a higher potential for repeatable main fuel ignition and flame propagation with the plasma torch placed at the middle of the three downstream torch stations tested ( x/dinjector = 8 downstream from the center of the injector area), with nitrogen as the torch feedstock. (Abstract shortened by UMI.)
机译:开发并测试了第一个集成的,齐平的壁面,航空斜坡燃料喷射器/等离子炬点火器和火焰传播系统,用于使用烃类燃料进行超音速燃烧。该项目的主要目标是开发一种设备,该设备可用于证明在等离子喷枪点火器/火焰保持器在气垫喷射器阵列的燃料喷射之后进行正确放置,高效的超音速燃烧,在高焓环境下具有低损耗和可能的热负荷。研究工作的第一阶段是在3.0马赫的静态压力和0.19 atm和101 K的温度下进行的。该阶段涉及组件分析,以改进气动斜坡和等离子炬的设计,以及解决集成问题。成立困难。从这些实验中学到的信息导致创建了第一个原型的集成式航空斜坡/等离子炬设计,该设计采用了新的简化的四孔航空斜坡设计。该项目的第二阶段包括在2.4马赫进行的实验,包括对新的飞机停机坪设计进行冷流混合评估,并调整用于合并到空军研究实验室(AFRL)的超燃冲压流路试验台中的设备的尺寸。实验是在0.25 atm和131 K的静态压力和温度下进行的,喷射器与自由流的动量通量之比范围为1.0到3.3。结果表明,由于喷射器阵列产生的高涡度,航空斜坡的混合速度比AFRL基线燃烧器配置中使用的喷射器快得多。研究的最后阶段涉及在冷流环境中在2.4马赫的条件下测试最终设备的设计,其中使用乙烯燃料喷射,并使用甲烷,氮气,90%的氮气和10%的氢气(按体积计)的混合物进行等离子炬燃烧,和空气原料气。实验是利用等离子炬在标称功率为2000瓦的条件下进行的,喷射器射流与自由流的动量通量比在1.4至3.3和1.2范围内进行的。总体而言,最终的集成设计显示出较高的混合效率,并具有较高的可重复主燃料着火和火焰传播的潜力,将等离子炬放置在所测试的三个下游炬架的中间(x /喷射器= 8中心下游)。喷射器区域),以氮气作为割炬原料。 (摘要由UMI缩短。)

著录项

  • 作者

    Jacobsen, Lance Steven.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号