首页> 外文学位 >Wave propagation in negative index materials.
【24h】

Wave propagation in negative index materials.

机译:负折射率材料中的波传播。

获取原文
获取原文并翻译 | 示例

摘要

Properties of electromagnetic propagation in materials with negative permittivities and permeabilities were first studied in 1968. In such metamaterials, the electric field vector, the magnetic field vector, and the propagation vector form a left hand triad, thus the name left hand materials. Research in this area was practically non-existent, until about 10 years ago, a composite material consisting of periodic metallic rods and split-ring resonators showed left-handed properties. Because the dimension of the constituents of the metamaterial are small compared to the operating wavelength, it is possible to describe the electromagnetic properties of the composite using the concept of effective permittivity and permeability.;In this dissertation, the basic properties of electromagnetic propagation through homogenous left hand materials are first studied. Many of the basic properties of left hand materials are in contrast to those in right hand materials, viz., negative refraction, perfect lensing, and the inverse Doppler effect. Dispersion relations are used to study wave propagation in negative index materials. For the first time to the best of our knowledge, we show that a reduced dispersion relation, obtained from the frequency dependence of the propagation constant by neglecting a linear frequency dependent term, obeys causality. Causality of the propagation constant enables us to use a novel and simple operator formalism approach to derive the underlying partial differential equations for baseband and envelope wave propagation.;Various tools for understanding and characterizing left-handed materials are thereafter presented. The transfer matrix method is used to analyze periodic and random structures composed of positive and negative index materials. By random structures we mean randomness in layer position, index of refraction, and thickness. As an application of alternating periodic negative index and positive index structures, we propose a novel sensor using the zero average gap that only appears in such structures which has different properties from the usual Bragg gap occurring in alternating positive index structures.;Also in this dissertation, we propose a novel negative index material in the visible range based on nanoparticle dispersed liquid crystal cells. The extended Maxwell Garnett theory, which is combination of the regular Maxwell Garnett and Mie scattering theories, is used to find the effective refractive index of the proposed cell. Nanoparticle dispersed liquid crystal cells can also be used as plasmonic sensors. A theoretical study of such sensors is presented. Finally, fabrication and testing of such cells is proposed and initial progress in fabrication is reported. The final assembly and testing of nanoparticle dispersed liquid crystal cells constitute ongoing and future work.
机译:具有负介电常数和磁导率的材料中的电磁传播特性于1968年首次得到研究。在此类超材料中,电场矢量,磁场矢量和传播矢量形成左手三合组,因此被称为左手材料。在这一领域的研究几乎不存在,直到大约10年前,由周期性金属棒和开口环谐振器组成的复合材料显示出惯用的特性。由于超材料的组成部分的尺寸与工作波长相比较小,因此可以使用有效介电常数和磁导率的概念来描述复合材料的电磁性能。首先研究左手材料。左手材料的许多基本特性与右手材料的特性相反,即负折射,完美的透镜作用和反多普勒效应。色散关系用于研究负折射率材料中的波传播。据我们所知,这是我们第一次表明,通过忽略线性频率相关项,从传播常数的频率相关性得到的减小的色散关系服从因果关系。传播常数的因果关系使我们能够使用一种新颖且简单的算子形式主义方法来推导基带和包络波传播的底层偏微分方程。之后,提供了各种用于理解和表征左手材料的工具。传递矩阵法用于分析由正负材料组成的周期和随机结构。随机结构是指层位置,折射率和厚度的随机性。作为交替的周期性负折射率和正折射率结构的一种应用,我们提出了一种使用零平均间隙的新型传感器,该传感器仅出现在这种结构中,具有与交替正折射率结构中常见的布拉格间隙不同的特性。 ,我们提出了一种基于纳米粒子分散液晶盒的可见光范围内的新型负折射率材料。扩展的麦克斯韦·加内特理论是常规麦克斯韦·加内特理论和米氏散射理论的结合,用于找到所提出的电池的有效折射率。纳米粒子分散的液晶盒也可以用作等离子体传感器。提出了这种传感器的理论研究。最后,提出了这种电池的制造和测试,并报道了制造的初步进展。纳米颗粒分散的液晶盒的最终组装和测试构成了正在进行的和未来的工作。

著录项

  • 作者

    Aylo, Rola.;

  • 作者单位

    University of Dayton.;

  • 授予单位 University of Dayton.;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人类学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号