首页> 外文学位 >Topology optimization of silicon anode structures for lithium-ion battery applications.
【24h】

Topology optimization of silicon anode structures for lithium-ion battery applications.

机译:锂离子电池应用中硅阳极结构的拓扑优化。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a topology optimization methodology for the systematic design of optimal multifunctional silicon anode structures in lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such, this work considers two design objectives of minimum compliance under design dependent volume expansion, and maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the iteration history, mesh independence, and influence of prescribed volume fraction and minimum length scale are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the compliance and conduction design criteria. A weighting method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. Furthermore, a systematic parameter study is undertaken to determine the influence of the prescribed volume fraction and minimum length scale on the optimal combined topologies. The developments presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.
机译:本文提出了一种用于锂离子电池最佳多功能硅阳极结构系统设计的拓扑优化方法。为了开发下一代高性能锂离子电池,必须解决与硅阳极结构有关的关键设计挑战,即锂引起的机械降解和硅的低固有电导率。因此,这项工作考虑了两个设计目标,即在取决于设计的体积膨胀下实现最小顺应性,以及通过结构实现最大电导通,这两个目标均受材料体积的限制。基于密度的拓扑优化方法与正则化技术,连续方案和数学编程方法结合使用。首先分别考虑目标,然后研究迭代历史,网格独立性以及规定的体积分数和最小长度比例的影响。该方法随后被扩展为一个双目标公式化,以同时满足顺从性和传导性设计标准。加权方法用于导出Pareto前沿,这证明了相互竞争的设计目标之间的明显权衡。此外,进行了系统的参数研究,以确定规定的体积分数和最小长度比例对最佳组合拓扑的影响。这项工作中提出的发展为高性能锂离子电池硅阳极结构的知情设计和开发提供了基础。

著录项

  • 作者

    Mitchell, Sarah L.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号