首页> 外文学位 >Development of a one-dimensional electro-thermophysical model of the snow sea-ice system: Arctic climate processes and microwave remote sensing applications.
【24h】

Development of a one-dimensional electro-thermophysical model of the snow sea-ice system: Arctic climate processes and microwave remote sensing applications.

机译:雪海冰系统的一维电热物理模型的开发:北极气候过程和微波遥感应用。

获取原文
获取原文并翻译 | 示例

摘要

Snow covered sea ice plays a crucial role in the earth's climate. This includes polar biology, local, regional and world weather and ocean circulations as well as indigenous people's way of life. Recent research has indicated significant climate change in the polar regions, especially the Canadian arctic. Polar climate processes are also among the most poorly misrepresented within global circulation models (GCMs). The goal of this thesis is to improve our understanding and capability to simulate arctic climate processes in a predictive sense. An electro-thermophysical relationship exists between the thermophysical characteristics (climate variables and processes) and electrical properties (dielectrics) that control microwave remote sensing of snow-covered first-year sea ice (FYI). This work explicitly links microwave dielectrics and a thermodynamic model of snow and sea ice by addressing four key issues. These includes: (1) ensure the existing one-dimensional sea ice models treat the surface energy balance (SEB) and snow/ice thermodynamics in the appropriate time scales we see occurring in field experiments, (2) ensure the snow/ice thermodynamics are not compromised by differences in environmental and spatial representation within components of the SEB, (3) ensure the snow layer is properly handled in the modeling environment, and (4) how we can make use of satellite microwave remote sensing data within the model environment. Results suggest that diurnal processes are critical and need to be accounted for in modeling snow-covered FYI, similar to time scales acting in microwave remote sensing signatures. Output from the coupled snow sea-ice model provides the required input to microwave dielectric models of snow and sea ice to predict microwave penetration depths within the snow and sea ice (an Electro-Thermophysical model of the Snow Sea Ice System (ETSSIS)). Results suggest ETSSIS can accurately simulate microwave penetration depths in the cold dry snow season and wet snow season (funicular snow regime). Simulated penetration depths become too large in the pendular snow regime since liquid water is not generated soon enough within the snow pack in the spring season. The inclusion of salinity in the mass balance of ETSSIS will improve the simulation of penetration depths in the pendular snow regime in future implementations of the model. (Abstract shortened by UMI.)
机译:积雪覆盖的海冰在地球的气候中起着至关重要的作用。这包括极地生物学,当地,区域和世界的天气和海洋环流以及土著人民的生活方式。最近的研究表明,极地地区,特别是加拿大北极地区,气候变化显着。极地气候过程也是全球环流模型(GCM)中最容易被错误描述的过程。本文的目的是提高我们的理解力和以预测意义模拟北极气候过程的能力。在热物理特性(气候变量和过程)与电学特性(电介质)之间存在电热物理关系,电学关系控制着冰雪覆盖的第一年海冰(FYI)的微波遥感。通过解决四个关键问题,这项工作明确地将微波电介质与雪和海冰的热力学模型联系在一起。其中包括:(1)确保现有的一维海冰模型能够在野外实验中看到的适当时间范围内处理表面能平衡(SEB)和雪/冰热力学,(2)确保雪/冰热力学是不受SEB组件内环境和空间表示形式差异的影响,(3)确保在建模环境中正确处理雪层,以及(4)如何在模型环境中利用卫星微波遥感数据。结果表明,昼夜过程至关重要,需要在积雪覆盖的FYI建模中加以考虑,这类似于微波遥感信号中的时标。耦合的雪海冰模型的输出为雪和海冰的微波电介质模型提供了所需的输入,以预测微波在雪和海冰内的渗透深度(雪海冰系统的电热物理模型(ETSSIS))。结果表明,ETSSIS可以准确地模拟在寒冷的干燥雪季和潮湿的雪季(漏斗雪期)中的微波穿透深度。由于在春季的积雪中液体水的生成速度不够快,因此在下摆雪域中模拟的渗透深度变得太大。 ETSSIS的质量平衡中包含盐分将改善模型未来实现中的摆雪状态下的渗透深度模拟。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号