首页> 外文学位 >Meshless methods in shape optimization of linear elastic and thermoelastic solids.
【24h】

Meshless methods in shape optimization of linear elastic and thermoelastic solids.

机译:线性弹性和热弹性实体形状优化中的无网格方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation proposes a meshless approach to problems in shape optimization of elastic and thermoelastic solids. The Element-free Galerkin (EFG) method is used for this purpose. The ability of the EFG to avoid remeshing, that is normally done in a Finite Element approach to correct highly distorted meshes, is clearly demonstrated by several examples. The shape optimization example of a thermal cooling fin shows a dramatic improvement in the objective compared to a previous FEM analysis. More importantly, the new solution, displaying large shape changes contrasted to the initial design, was completely missed by the FEM analysis.; The EFG formulation given here for shape optimization “uncovers” new solutions that are, apparently, unobtainable via a FEM approach. This is one of the main achievements of our work.; The variational formulations for the analysis problem and for the sensitivity problems are obtained with a penalty method for imposing the displacement boundary conditions. The continuum formulation is general and this facilitates 2D and 3D with minor differences from one another. Also, transient thermoelastic problems can use the present development at each time step to solve shape optimization problems for time-dependent thermal problems. For the elasticity framework, displacement sensitivity is obtained in the EFG context. Excellent agreements with analytical solutions for some test problems are obtained. The shape optimization of a fillet is carried out in great detail, and results show significant improvement of the EFG solution over the FEM or the Boundary Element Method solutions. In our approach we avoid differentiating the complicated EFG shape functions, with respect to the shape design parameters, by using a particular discretization for sensitivity calculations. Displacement and temperature sensitivities are formulated for the shape optimization of a linear thermoelastic solid. Two important examples considered in this work, the optimization of a thermal fin and of a uniformly loaded thermoelastic beam, reveal new characteristics of the EFG method in shape optimization applications.; Among other advantages of the EFG method over traditional FEM treatments of shape optimization problems, some of the most important ones are shown to be: elimination of post-processing for stress and strain recovery that directly gives more accurate results in critical positions (near the boundaries, for example) for shape optimization problems; nodes movement flexibility that permits new, better shapes (previously missed by an FEM analysis) to be discovered.; Several new research directions that need further consideration are exposed.
机译:本文针对弹性和热弹性固体的形状优化提出了一种无网格方法。无元素Galerkin(EFG)方法用于此目的。几个示例清楚地表明了EFG避免重新网格化的能力(通常以有限元方法来纠正高度变形的网格)。与以前的FEM分析相比,热冷却鳍片的形状优化示例显示出在目标方面的巨大改进。更重要的是,FEM分析完全忽略了新解决方案,该解决方案与初始设计相比显示出较大的形状变化。此处给出的用于形状优化的EFG公式“发现”了新的解决方案,这些解决方案显然是无法通过FEM方法获得的。这是我们工作的主要成就之一。通过施加位移边界条件的惩罚方法获得了分析问题和灵敏度问题的变分公式。连续体公式很笼统,这有助于2D和3D之间的微小差异。同样,瞬态热弹性问题可以在每个时间步使用当前的发展来解决与时间有关的热问题的形状优化问题。对于弹性框架,在EFG环境中获得位移敏感性。对于某些测试问题,获得了与分析解决方案的出色协议。圆角的形状优化非常详细,结果表明EFG解决方案比FEM或边界元方法解决方案有了显着改进。在我们的方法中,通过使用特定的离散度进行灵敏度计算,避免了针对形状设计参数区分复杂的EFG形状函数。公式化了位移和温度敏感性,以优化线性热弹性固体的形状。这项工作中考虑的两个重要示例,即散热片的优化和均布的热弹性梁的优化,揭示了EFG方法在形状优化应用中的新特性。相对于形状优化问题的传统FEM处理,EFG方法的其他优势包括:消除应力和应变恢复的后处理,可直接在关键位置提供更准确的结果(边界附近) (例如)用于形状优化问题;节点的移动灵活性,可以发现新的更好的形状(以前是FEM分析所遗漏的)。暴露了一些需要进一步考虑的新研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号