首页> 外文学位 >Robust active combustion control for the optimization of environmental performance and energy efficiency.
【24h】

Robust active combustion control for the optimization of environmental performance and energy efficiency.

机译:强大的主动燃烧控制,可优化环境性能和能源效率。

获取原文
获取原文并翻译 | 示例

摘要

Criteria pollutant regulations, climate change concerns, and energy conservation efforts are placing strict constraints in the design and operation of advanced, stationary combustion systems. To ensure minimal pollutant emissions and maximal efficiency at every instant of operation while preventing reaction blowout, combustion systems need to react and adapt in real-time to external changes. This study describes the development, demonstration, and evaluation of a multivariable feedback control system, designed to maximize the performance of natural gas-fired combustion systems.; A feedback sensor array was developed to monitor reaction stability and measure combustion performance as a function of NOx, CO, and O, emissions. Acoustic and UV chemiluminescent emissions were investigated for use as stability indicators. Modulated signals of CH* and CO2* chemiluminescence were found to correlate well with the onset of lean blowout. A variety of emissions sensors were tested and evaluated, including conventional CEMS', micro-fuel cells, a zirconia NOx transducer, and a rapid response predictive NOx sensor based on UV flame chemiluminescence.; A dual time-scale controller was designed to actively optimize operating conditions by maximizing a multivariable performance function J using a linear direction set search algorithm. The controller evaluated J under slow, quasi steady-state conditions, while dynamically monitoring the reaction zone at high speed for pre-blowout instabilities or boundary condition violations.; To establish the input control parameters, two burner systems were selected: a 30 kW air-swirl, generic research burner, and a 120 kW scaled, fuel-staged, industrial boiler burner. The parameters, chosen to most affect burner performance, consisted of air swirl intensity and excess air for the generic burner, and fuel-staging and excess air for the boiler burner. A set of optimization parameters was also established to ensure efficient and deterministic optimization.; The active control system was demonstrated and evaluated by optimizing the burners under practical conditions. In most cases, the controller was able to locate, within 10–15 min, a global performance peak that simultaneously minimized emissions and maximized system efficiency within specified stability limits. The active controller demonstrated flexibility and robustness by (a) successfully optimizing different burners for different J functions, initial conditions, and sensor combinations, and (b) successfully reoptimizing a burner under the effect of simulated window fouling and following sudden inlet perturbations, including load cycling and a misaligned fuel injector.
机译:标准污染物法规,对气候变化的关注以及节能工作正在对先进的固定式燃烧系统的设计和运行施加严格的限制。为了确保每个操作瞬间的污染物排放量最小和效率最高,同时防止反应爆裂,燃烧系统需要做出反应并实时适应外部变化。这项研究描述了多变量反馈控制系统的开发,演示和评估,该系统旨在最大程度地提高天然气燃烧系统的性能。开发了一种反馈传感器阵列来监测反应稳定性并测量燃烧性能与NO x ,CO和O排放量的关系。研究了声发射和紫外化学发光,将其用作稳定性指标。发现CH *和CO 2 *化学发光的调制信号与稀薄井喷的发生良好相关。测试和评估了各种排放传感器,包括常规的CEMS',微型燃料电池,氧化锆NO x 传感器和基于该传感器的快速响应预测NO x 传感器。 UV火焰化学发光。设计了一个双时标控制器,通过使用线性方向集搜索算法最大化多变量性能函数 J 来主动优化运行条件。控制器在缓慢的准稳态条件下评估 J ,同时以动态方式高速监视反应区的井喷前不稳定性或违反边界条件。为了建立输入控制参数,选择了两个燃烧器系统:一个30 k​​W的空气旋流通用研究型燃烧器和一个120 kW的比例缩放,燃料分级的工业锅炉燃烧器。选择的最能影响燃烧器性能的参数包括空气涡流强度和通用燃烧器的过量空气,以及锅炉燃烧器的燃料分级和过量空气。还建立了一组优化参数以确保高效和确定性的优化。通过在实际条件下优化燃烧器,对主动控制系统进行了演示和评估。在大多数情况下,控制器能够在10-15分钟内找到一个全局性能峰值,该峰值在指定的稳定性极限内同时将排放量最小化和系统效率最大化。主动控制器通过(a)针对不同的 J 功能,初始条件和传感器组合成功优化了不同的燃烧器,以及(b)在模拟窗户积垢的影响下成功地重新优化了燃烧器,从而展示了灵活性和鲁棒性进气口突然发生扰动,包括负载循环和喷油器未对准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号