首页> 外文学位 >Molecular dynamics simulations of machining, materials testing, and tribology at the atomic scale.
【24h】

Molecular dynamics simulations of machining, materials testing, and tribology at the atomic scale.

机译:在原子尺度上进行机械加工,材料测试和摩擦学的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Scope and method of study. The scale of materials processing in ultraprecision machining (UPM) and micro-electro-mechanical-systems (MEMS) is in the range of a few atomic layers. Consequently, understanding the material behavior under various loading conditions at the atomic regime based on experimentation alone is extremely difficult, time consuming, expensive, and also limited by technological constraints. An alternate approach is to analyze the process by Molecular Dynamics (MD) simulation technique, which is the subject of this investigation. It is shown in this study that MD simulation technique is an extremely powerful and valuable tool in addressing a range of machining, materials testing, and tribological problems.; Findings and conclusions. The results presented in this study are in agreement with the experimental and the simulation findings and at the same time provide solutions to many questions left unanswered based on experimental evidence alone. For example, the simulations on the effect of crystal orientation and cutting direction provided plausible explanations for the high and low shear angles reported by researchers in microcutting of single crystal materials. MD simulations of nanometric cutting and nanoindentation of silicon provided evidence for a plausible transformation of silicon from the α- to β-phase associated with a volume change. The study on the nature of atomic scale friction showed that whenever material removal is involved even at extremely fine scratch depths, the magnitude of friction coefficients can be high, dependent on the rake angle presented by the tool, and independent of the normal force. The material properties measured based on uniaxial tension and nanoindentation experiments are in agreement with the values reported in the literature based on experimentation and theoretical calculations. These results suggest that MD simulation is a versatile and inexpensive tool that can be used with reasonable success to simulate a variety of problems at the atomic scale.
机译:研究范围和方法。超精密加工(UPM)和微机电系统(MEMS)中的材料加工规模在几个原子层的范围内。因此,仅根据实验来了解原子态下各种载荷条件下的材料行为是极其困难,耗时,昂贵的,并且还受到技术约束的限制。另一种方法是通过分子动力学(MD)模拟技术来分析过程,这是本研究的主题。研究表明,MD仿真技术是解决一系列加工,材料测试和摩擦学问题的极其强大且有价值的工具。 发现和结论。这项研究中提出的结果与实验和模拟结果相符,同时提供了仅基于实验证据就可以解决的许多问题的解决方案。例如,对晶体取向和切割方向的影响的模拟为研究人员在单晶材料微切割中报道的高和低剪切角提供了合理的解释。硅的纳米级切割和纳米压痕的MD模拟提供了与体积变化相关的硅从α相到β相的合理转变的证据。对原子尺度摩擦性质的研究表明,即使在极细的划痕深度处进行材料去除,摩擦系数的大小也可能很高,这取决于工具所呈现的前角并且与法向力无关。基于单轴拉伸和纳米压痕实验测量的材料性能与基于实验和理论计算的文献报道的值一致。这些结果表明,MD仿真是一种通用且廉价的工具,可以合理成功地使用它来在原子尺度上仿真各种问题。

著录项

  • 作者单位

    Oklahoma State University.;

  • 授予单位 Oklahoma State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 388 p.
  • 总页数 388
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号