首页> 外文期刊>Journal of computational science >Machine learning surrogates for molecular dynamics simulations of soft materials
【24h】

Machine learning surrogates for molecular dynamics simulations of soft materials

机译:软材料分子动力学模拟机器学习替代品

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics (MD) simulations accelerated by high-performance computing (HPC) methods are powerful tools to investigate and extract the microscopic mechanisms characterizing the properties of soft materials such as self-assembled nanoparticles, virus capsids, confined electrolytes, and polymeric fluids. In this paper, we extend the idea developed in our earlier work of integrating machine learning (ML) methods with HPC-accelerated MD simulations of soft materials in order to enhance their predictive power and advance their applications for research and educational activities. Parallelized MD simulations of self-assembling ions in nanoconfinement are employed to demonstrate our approach. We find that an artificial neural network-based regression model successfully learns nearly all the interesting features associated with the output ionic density profiles over a broad range of ionic system parameters. The ML model generates predictions that are in excellent agreement with the results from MD simulations. The inference time associated with the ML model is over a factor of 10,000 smaller than the corresponding parallel MD simulation time. Through this demonstration, we introduce a "machine learning surrogate" for MD simulations of soft-matter systems. We develop and deploy a web application on nanoHUB to realize the advantages associated with the ML surrogate. The results demonstrate that the performance of MD simulations can be further enhanced by using ML, enabling rapid and accurate simulation-driven exploration of the soft material design space. (C) 2020 Elsevier B.V. All rights reserved.
机译:通过高性能计算(HPC)方法加速的分子动力学(MD)模拟是能够研究和提取特征的微观机制的强大工具,其特征是自组装纳米颗粒,病毒衣壳,限制电解质和聚合物流体的软材料的性质。在本文中,我们将在整合机器学习(ML)方法与软材料的HPC加速MD模拟相结合的工作中,扩展了在我们的较早的工作中开发的想法,以提高他们的预测电力并推进其研究和教育活动的应用。采用平行化的MD模拟纳米罚单中的自组装离子进行展示我们的方法。我们发现,基于人工神经网络的回归模型几乎可以从广泛的离子系统参数上成功地学习与输出离子密度配置相关的所有有趣特征。 ML模型生成了与MD模拟结果非常愉快的预测。与ML模型相关联的推理时间比相应的并行MD模拟时间小于10,000。通过这次演示,我们为软件系统的MD模拟引入了“机器学习代理”。我们在Nanohub上开发和部署Web应用程序,实现与ML代理相关的优点。结果表明,使用ML可以进一步增强MD模拟的性能,从而实现软材料设计空间的快速准确的仿真驱动探索。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号