首页> 外文学位 >Molecular dynamics simulation of thermal conduction in solid and nanoporous thin films.
【24h】

Molecular dynamics simulation of thermal conduction in solid and nanoporous thin films.

机译:固体和纳米多孔薄膜中热传导的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Thin solid films and porous materials with nanometer-scale characteristic dimensions possess physical properties fundamentally different from those observed at larger length scales. These novel materials form the building blocks of a small but growing number of innovative new structures and devices in applications such as optical communications, electronics, and chemical sensing. The ultrasmall dimensions of these structures can strongly impede the conduction of heat away from high-temperature regions, possibly causing severe performance degradation or even failure. A basic understanding of thermal conduction phenomena in these structures thus becomes critical to optimize performance in the above applications.; The molecular dynamics computational technique is used in this work to investigate thermal conduction in solid and nanoporous thin films. The simulations are based on the widely used Lennard-Jones argon model and are performed in a full three dimensional domain. For nanoporous thin films, parameters such as average temperature, pore placement, and pore shape, size, and orientation are examined in order to better understand their influence on the temperature profiles and overall thermal conductivity. For solid thin films, the effects of film thickness, lateral extent, temperature, boundary conditions, and applied flux are studied. The results for both cases are compared to experimental data and theoretical calculations, and practical guidelines for effective simulations are outlined.; To complement the molecular dynamics simulations and to pinpoint areas where they can be improved, this work also performs laser-based thermal conductivity measurements on films of nanoporous silicon, a technologically relevant engineering material. The relationship between processing, structure, and thermal conductivity is examined systematically in an attempt to address the inconsistent values for porous silicon thermal conductivity reported in the literature.; Key findings of this work are that the calculated values show reasonable agreement with experimental data, that thermal conductivity increases with film thickness, that thermal conductivity shows little temperature dependence for films with pores larger than five atomic vacancies, and that the proximity of a pore to the hot or cold boundaries of a film influences its overall thermal conductivity. The tuning of material properties by pore placement creates exciting possibilities for the engineering of thermal transport at nanometer scales.
机译:具有纳米尺度特征尺寸的固体薄膜和多孔材料具有与在较大长度尺度上观察到的物理性质根本不同的物理性质。这些新颖的材料构成了诸如光通信,电子学和化学传感等应用领域中数量很少但数量不断增加的创新性新结构和设备的基础。这些结构的超小尺寸会极大地阻止热量从高温区域传导出去,从而可能导致严重的性能下降甚至失效。因此,对这些结构中的热传导现象的基本了解对于优化上述应用中的性能至关重要。在这项工作中使用了分子动力学计算技术来研究固体和纳米多孔薄膜中的热传导。模拟基于广泛使用的Lennard-Jones氩气模型,并且在完整的三维域中执行。对于纳米多孔薄膜,要检查诸如平均温度,孔的位置以及孔的形状,大小和方向之类的参数,以便更好地了解它们对温度曲线和整体热导率的影响。对于固体薄膜,研究了薄膜厚度,横向范围,温度,边界条件和施加的焊剂的影响。将两种情况的结果与实验数据和理论计算进行比较,并概述了有效模拟的实用指南。为了补充分子动力学模拟并查明可以改进的地方,这项工作还对纳米多孔硅(一种技术相关的工程材料)薄膜进行了基于激光的热导率测量。为了解决文献中报道的多孔硅热导率的不一致值,系统地检查了工艺,结构和热导率之间的关系。这项工作的主要发现是,计算值与实验数据基本吻合,热导率随膜厚的增加而增加,对于孔隙大于五个原子空位的膜,热导率对温度的依赖性很小,并且孔隙与膜的热边界或冷边界会影响其总体导热率。通过孔的放置来调节材料性能为纳米尺度的热传输工程创造了令人兴奋的可能性。

著录项

  • 作者

    Lukes, Jennifer Renee.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号