首页> 外文学位 >Modeling, identification, and trajectory planning for a model-scale helicopter.
【24h】

Modeling, identification, and trajectory planning for a model-scale helicopter.

机译:模型规模直升机的建模,识别和轨迹规划。

获取原文
获取原文并翻译 | 示例

摘要

There has been a great deal of interest in the dynamics and control of unmanned helicopter robots since the last decade, as such unmanned aerial vehicles (UAV) are being re-discovered. They are an excellent cost-effective and safe way to replace human operators/pilots in military, civilian, and commercial areas when there exist significant threats to human lives, or when the environment is not suitable for large human-carrying vehicles.; A mathematical model for a model-scale unmanned helicopter robot, with emphasis on the dynamics of the flybar is first presented. The model is based on a rigid-body description of the helicopter, with four actuation inputs representing the four stick positions available to the remote-control pilot. The interaction between the flybar and the main rotor blade is explained in detail; it is shown how the flapping of the flybar increases the stability of the helicopter robot as well as assists in its actuation. Working from first principles and basic aerodynamics, the equations of motion for the helicopter and flybar are derived.; The second part of this dissertation presents system identification experiments for the model helicopter. The results verify the mathematical model structure described above. They are used to identify model parameters such as inertias and aerodynamic constants by directly taking the nonlinear model structure into account.; Autonomous vehicles with nonlinear dynamics such as the model helicopter need to have a planned reference trajectory and a feedback controller to accomplish the task of traveling from a launch point to a goal point. A general methodology for finding feasible and approximately optimal trajectory without violating the state and input bounds is presented. Examples of single and multiple waypoint trajectory generation cases based on a simplified nonlinear longitudinal helicopter model with minimum time criteria are included. It is also shown why the planning method requires a closed-loop controller, and our trajectory generation method is superior over traditional point-stabilization control method. This dissertation concludes with a brief discussion of future work.
机译:自从最近十年以来,人们对无人直升机机器人的动力学和控制产生了浓厚的兴趣,因为这种无人机已经被重新发现。当存在对人类生命的重大威胁或环境不适合大型载人车辆使用时,它们是在军事,民用和商业区域替换人类操作员/飞行员的极佳成本效益和安全方式。首先介绍了模型规模的无人直升机机器人的数学模型,重点是飞杆的动力学。该模型基于直升机的刚体描述,具有四个致动输入,代表遥控飞行员可使用的四个操纵杆位置。详细说明了飞杆和主旋翼桨叶之间的相互作用。它显示了飞杆的摆动如何增加直升机机器人的稳定性以及如何辅助其致动。从基本原理和基本空气动力学原理出发,推导了直升机和飞杆的运动方程。本文的第二部分介绍了直升机模型的系统辨识实验。结果证实了上述数学模型结构。它们通过直接考虑非线性模型结构来识别模型参数,例如惯性和空气动力学常数。具有非线性动力学的自动驾驶汽车,例如模型直升机,需要具有计划的参考轨迹和反馈控制器,以完成从发射点到目标点的行驶任务。提出了一种在不违反状态和输入界限的情况下找到可行且近似最佳轨迹的通用方法。包括基于具有最小时间准则的简化的非线性纵向直升机模型的单路和多路航迹轨迹生成情况的示例。这也说明了为什么计划方法需要闭环控制器,并且我们的轨迹生成方法优于传统的点稳定控制方法。本文以对未来工作的简要讨论作为结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号